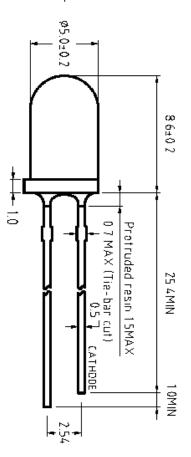

5MM BLUE LED LAMP


DESCRIPTION

- Round Type
- 5mm Diameter
- Lens Color: Water Clear
- With Flange
- Solder leads without standoff

FEATURES

- Epoxy Resin
- Ag Plating on SPCC lead frame
- Emitted Color: Blue
- Technology: InGaN
- Peak Wavelength λp = 465nm
- Viewing Angle: 15°

Notes:

- 1. All dimensions are in millimeters.
- 2. Lead spacing is measured where the lead emerges from the package.

Dort Number	Meterial	Lens	Color
Part Number	Material	Emitted	Lens
L513BMBC-15D	InGaN	Blue	Water Clear

5MM BLUE LED LAMP

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

Parameter	Symbol	Ratings	Unit
DC Forward Current	I _F	30	mA
Peak Pulsed Forward Current*	I _{FP}	100	mA
Reverse Voltage	V_R	5	V
Power Dissipation	P _D	114	mW
Operating Temperature	T _{OPR}	-30~+100	°C
Storage Temperature	T _{STG}	-40~+100	°C
Soldering Temperature	T _{SOL}	Max 260°C for 5 sec	

^{*}I_{FP} = Pulse Width ≤ 10 ms, Duty Ratio ≤ 1/10

OPTICAL-ELECTRICAL CHARACTERISTICS

(Ta=25°C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Reverse Current	I_{R}	V _R =5V			50	μΑ
Forward Voltage	V _F			3.2	3.8	V
Luminous Intensity	I _V	I _F =20mA	5500	9300	15700	mcd
Peak Wavelength	λ_{P}			465		nm
Dominant Wavelength	λ_{D}		460	470	480	nm
Spectral Radiation Bandwidth	Δλ½			20		nm
Viewing Angle	201/2			15		Deg

5MM BLUE LED LAMP

LUMINOUS INTENSITY BIN TABLE

IF=20mA

Rank name	Min (mcd)	Max (mcd)
W	5500	7200
X	7200	9300
Y	9300	12000
Z	12000	15700

Tolerance for each bin limit is $\pm 15\%$

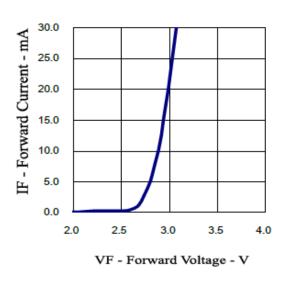
COLOR BIN TABLE

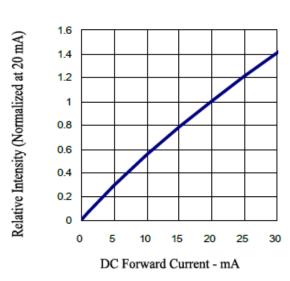
IF=20mA

Rank name	Min (nm)	Max (nm)
1	460	465
2	465	470
3	470	475
4	475	480

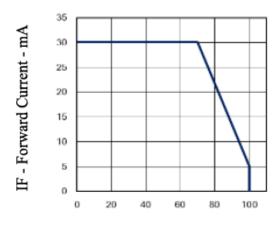
Tolerance for each bin limit is ±1nm

Notes:

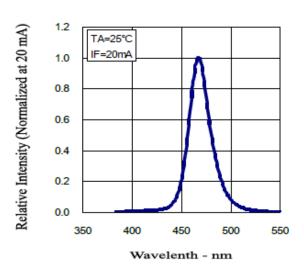

- 1. One delivery will include several color ranks and Iv ranks of products. The quantity-ratio of the different rank is decided by AOP.
- 2. Bin name typed on label: Iv rank + Color rank. For example: BIN W2 means IV: 5500mcd~7200mcd and COLOR: 465nm~470nm


5MM BLUE LED LAMP

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES


Forward Current vs. Forward Voltage

Relative Intensity vs. Forward Current



Forward Current vs. Ambient Temperature

TA - Ambient Temperature - °C

Relative Intensity vs. Wavelength

5MM BLUE LED LAMP

RECOMMENDED SOLDERING CONDITIONS

- Solder the LED no closer than 3mm from the base of the epoxy bulb. Soldering beyond the base of the tie bar is recommended.
- Recommended soldering conditions:

Dip Soldering		
Pre-Heat	100°C Max.	
Pre-Heat Time	60 sec. Max.	
Solder Bath Temperature	260°C Max.	
Dipping Time	5 sec. Max.	
Dipping Position	No lower than 3mm from the base of the epoxy bulb.	

Hand Soldering			
	Current Series	Others (Including Lead-Free Solder)	
Temperature	300 °C Max.	350 °C Max.	
Soldering time	3 sec. Max.	3 sec. Max.	
Position	No closer than 3mm from	No closer than 3mm from	
	the base of the epoxy bulb.	the base of the epoxy bulb.	

- Do not apply any stress to the lead, particularly when heated.
- The LEDs must not be repositioned after soldering.
- After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- Direct soldering onto a PC board should be avoided. Mechanical stress to the resin may be caused by the PC board warping or from the clinching and cutting of the lead frames. When it is absolutely necessary, the LEDs may be mounted in this fashion, but, the User will assume responsibility for any problems. Direct soldering should only be done after testing has confirmed that no damage, such as wire bond failure or resin deterioration, will occur. LEDs should not be soldered directly to double sided PC boards because the heat will deteriorate the epoxy resin.
- When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- Cut the LED lead frames at room temperature. Cutting the lead frames at high temperatures may cause LED failure.