

v02.0311

Typical Applications

The HMC931LP4E is ideal for:

- EW Receivers
- Military Radar
- Test Equipment
- Satellite Communications
- Beam Forming Modules

Functional Diagram

410° ANALOG PHASE SHIFTER, 8 - 12 GHz

Features

Wide Bandwidth: 8 - 12 GHz 410° Phase Shift Low Insertion Loss: 3.5 dB Low Phase Error: +12 / -7 deg Typ. Single Positive Voltage Control 24 Lead 4x4 mm QFN Package: 16 mm²

General Description

The HMC931LP4E is an Analog Phase Shifter which is controlled via an analog control voltage from 0 to +13V. The HMC931LP4E provides a continuously variable phase shift of 0 to 410 degrees from 8 to 12 GHz, with extremely consistent low insertion loss versus phase shift and frequency. The high accuracy HMC931LP4E is monotonic with respect to control voltage and features a typical low phase error of +12 / -7 degrees over a wide bandwidth. The HMC931LP4E is housed in an RoHS compliant 4x4 mm QFN leadless package.

Electrical Specifications, $T_A = +25^{\circ}$ C, 50 Ohm System

Parameter	Min.	Тур.	Max.	Units
Frequency Range	8		12	GHz
Phase Shift Range		410		deg
Insertion Loss		3.5		dB
Return Loss (input and output)		12		dB
Control Voltage Range	0		13	V
Control Current Range			± 1	mA
Input IP3		32		dBm
Input Power @ - 5° Shift In Insertion Phase (VctI = 0V)		11.2		dBm
Input Power @ - 2° Shift In Insertion Phase (VctI = 0.5V)		12		dBm
Phase Voltage Sensitivity		32		deg/V
Phase Error (peak) *		+15 / -7		deg
Phase Error (average) *		+12 / -1		deg
Modulation Bandwidth		50		MHz
Insertion Phase Temperature Sensitivity		0.12		deg/°C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

8 - 12 GHz

v02.0311

Insertion Loss vs. Frequency

Phase Shift vs. Vctl

Phase Shift vs. Frequency (Relative to Vctl = 0V) Vctl = 0.5 to 13V

^{[1] 0} to 10V provides 0 - 360 degrees phase shift range

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Insertion Loss vs. Vctl , F = 10 GHz

410° ANALOG PHASE SHIFTER,

Phase Shift vs. Frequency @ Vctl = 6V (Relative to Vctl = 0V)

Phase Error vs. Frequency, Fmean = 10 GHz ^[1]

8 - 12 GHz

v02.0311

Second Harmonics vs. Vctl, F = 10 GHz

Input IP3 vs. Vctl, F = 10 GHz

Insertion Loss vs. Pin @ 10 GHz

410° ANALOG PHASE SHIFTER,

Insertion Loss vs. Pin @ 8 GHz

Insertion Loss vs. Pin @ 12 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v02.0311

Phase Shift vs. Pin @ 8 GHz

Phase Shift vs. Pin @ 12 GHz

Output Return Loss vs. Frequency, Vctl = 0 to +13V

410° ANALOG PHASE SHIFTER, 8 - 12 GHz

Phase Shift vs. Pin @ 10 GHz

Input Return Loss vs. Frequency, Vctl = 0 to +13V

Reliability Information

Junction Temperature (Tj)	150 °C
Nominal Junction Temperature (T = 85 °C, Pin = 10 dBm)	87 °C
Thermal Resistance (Junction to GND Paddle)	80 °C/W
Operating Temperature	-40 to +85 °C

Absolute Maximum Ratings

Input Power (RFIN)	+26 dBm
Control Voltage (Vctl)	-0.5V to +15V
Storage Temperature	-65 to +150 °C
ESD Sensitivity (HBM)	Class 1B

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v02.0311

410° ANALOG PHASE SHIFTER, 8 - 12 GHz

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC931LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H931</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 5 - 14, 18 - 20, 22 - 24	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.		
2, 4, 15, 17	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.		
3	RFIN	Port is DC blocked.	RFIN ○──	
16	RFOUT	Port is DC blocked.		
21	Vctl	Phase shift control pin. Application of a voltage between 0 and 13 volts causes the transmission phase to change. The DC equivalent circuit is a series connected diode and resistor.	Vctl 10nH 2000 12.8 pF 12pF	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v02.0311

410° ANALOG PHASE SHIFTER, 8 - 12 GHz

Evaluation PCB

List of Materials for Evaluation PCB 108812 [1]

Item	Description	
J1, J2	PCB Mount SMA Connector, SRI	
J3	PCB Mount SMA Connector	
U1	HMC931LP4E Analog Phase Shifter	
PCB [2]	111296 Evaluation PCB	

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.