MJD5731

High Voltage PNP Silicon Power Transistors

Designed for line operated audio output amplifier, SWITCHMODE power supply drivers and other switching applications.

Features

- PNP Complements to the MJD47 thru MJD50 Series
- Epoxy Meets UL 94 V-0 @ 0.125 in
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS

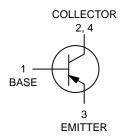
Rating	Symbol	Max	Unit
Collector–Emitter Voltage	V _{CEO}	350	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current – Continuous	I _C	1.0	Adc
Collector Current – Peak	I _{CM}	3.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	15 0.12	W W/°C
Total Power Dissipation (Note 1) @ T _A = 25°C Derate above 25°C	P _D	1.56 0.0125	W W/°C
Unclamped Inductive Load Energy (See Figure 10)	Е	20	mJ
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C
ESD - Human Body Model	HBM	3B	V
ESD – Machine Model	MM	С	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 These ratings are applicable when surface mounted on the minimum pad sizes recommended.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	8.33	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	80	°C/W
Lead Temperature for Soldering	T _L	260	°C


These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ON Semiconductor®

http://onsemi.com

SILICON POWER TRANSISTORS 1.0 AMPERE 350 VOLTS, 15 WATTS

DPAK CASE 369C STYLE 1

MARKING DIAGRAM

A = Assembly Location

Y = Year
WW = Work Week
J5731 = Device Code
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MJD5731T4G	DPAK (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MJD5731

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1	1
Collector–Emitter Sustaining Voltage (Note 3) $(I_C = 30 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	350	-	Vdc
Collector Cutoff Current (V _{CE} = 250 Vdc, I _B = 0)	I _{CEO}	-	0.1	mAdc
Collector Cutoff Current (V _{CE} = 350 Vdc, V _{BE} = 0)	I _{CES}	-	0.01	mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	I _{EBO}	-	0.5	mAdc
ON CHARACTERISTICS (Note 3)	<u> </u>			
DC Current Gain $(I_C = 0.3 \text{ Adc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc})$	h _{FE}	30 10	175 -	-
Collector–Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.2 Adc)	V _{CE(sat)}	-	1.0	Vdc
Base–Emitter On Voltage (I _C = 1.0 Adc, V _{CE} = 10 Vdc)	V _{BE(on)}	-	1.5	Vdc
DYNAMIC CHARACTERISTICS	<u> </u>			
Current Gain – Bandwidth Product (I _C = 0.2 Adc, V _{CE} = 10 Vdc, f = 2.0 MHz)	f _T	10	-	MHz
Small–Signal Current Gain (I _C = 0.2 Adc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	25	_	_

^{3.} Pulse Test: Pulse Width $\leq 300~\mu s,~Duty~Cycle \leq 2.0\%.$

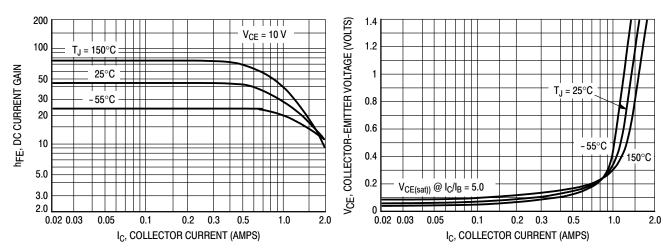


Figure 1. DC Current Gain

Figure 2. Collector-Emitter Saturation Voltage

MJD5731

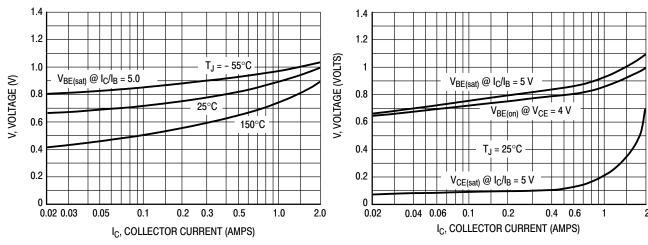


Figure 3. Base-Emitter Voltage

Figure 4. "On" Voltages

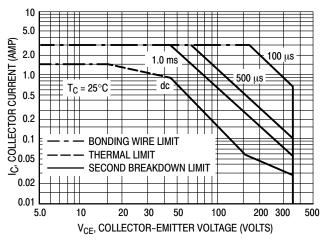


Figure 5. Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 6. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

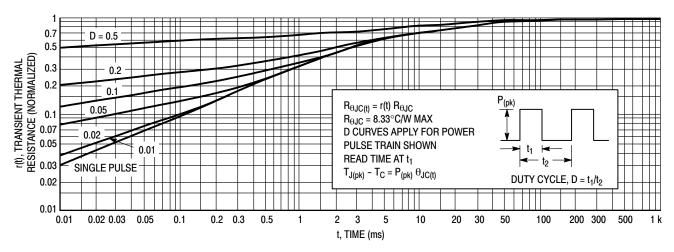


Figure 6. Thermal Response

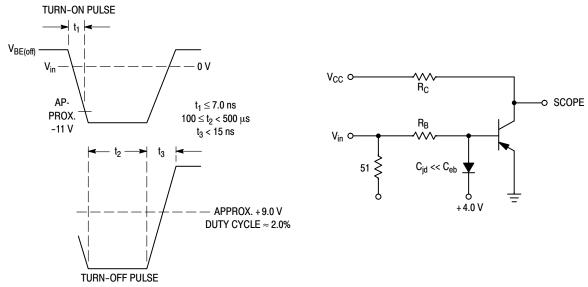


Figure 7. Switching Time Equivalent Circuit

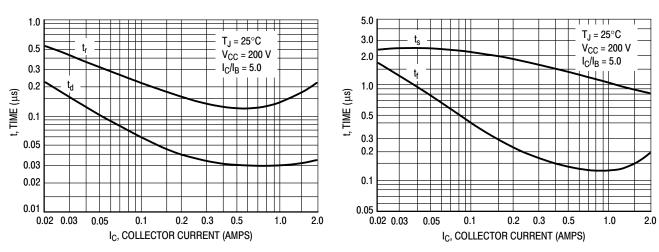


Figure 8. Turn-On Resistive Switching Times

Figure 9. Resistive Turn-Off Switching Times

 $t_\text{w} \approx 3 \text{ ms}$ (SEE NOTE 1)

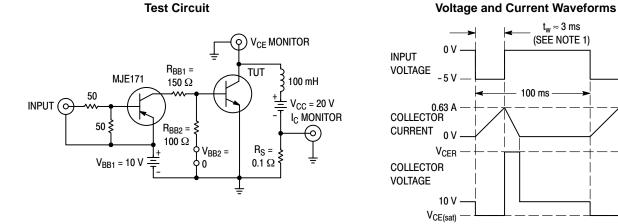
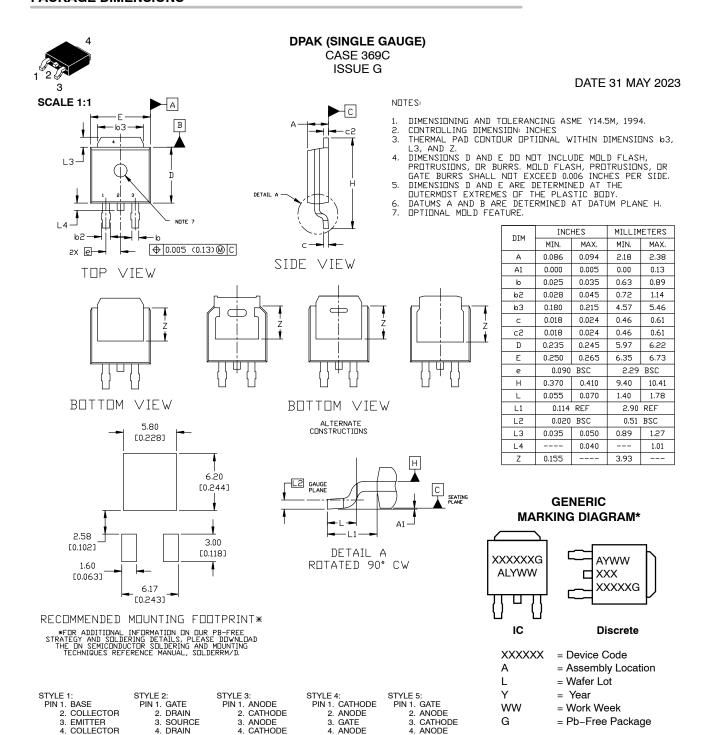



Figure 10. Inductive Load Switching

DOCUMENT NUMBER: 98AON10527D Electronic versions are uncontrolled except when accessed directly 1 Printed versions are uncontrolled except when stamped "CONTROLL			
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

STYLE 10:

PIN 1. CATHODE 2. ANODE

3 CATHODE

4. ANODE

STYLE 9:

PIN 1. ANODE 2. CATHODE

3 RESISTOR ADJUST

CATHODE

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

STYLE 7: PIN 1. GATE 2. COLLECTOR

3 FMITTER

4. COLLECTOR

STYLE 8:

PIN 1. N/C 2. CATHODE

3 ANODE

CATHODE

STYLE 6:

PIN 1. MT1 2. MT2

3 GATE

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot "=", may

or may not be present. Some products may

not follow the Generic Marking.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales