N-channel TrenchMOS[™] logic level FET Rev. 01 — 29 March 2004

Product data

1. Product profile

1.1 Description

Logic level N-channel enhancement mode field-effect transistor in a plastic package using TrenchMOS[™] technology.

1.2 Features

2. Pinning information

Table 1: Pinning - SOT78 (TO-220AB) and SOT404 (D²-PAK), simplified outline and symbol

[1] It is not possible to make connection to pin 2 of the SOT404 package.

N-channel TrenchMOS[™] logic level FET

3. Ordering information

Table 2: Ordering information					
Type number	Package				
	Name	Description	Version		
PHP110NQ08LT	TO-220AB	Plastic single-ended package; heatsink mounted; 1 mounting hole; 3 leads	SOT78		
PHB110NQ08LT	D ² -PAK	Plastic single-ended surface mounted package; 3 leads (one lead cropped)	SOT404		

4. Limiting values

Table 3: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage (DC)	25 °C ≤ T _j ≤ 175 °C	-	75	V
V _{DGR}	drain-gate voltage (DC)	25 °C \leq T _j \leq 175 °C; R _{GS} = 20 k Ω	-	75	V
V _{GS}	gate-source voltage (DC)		-	±20	V
I _D	drain current (DC)	T_{mb} = 25 °C; V_{GS} = 10 V; Figure 2 and 3	-	75	А
		T_{mb} = 100 °C; V_{GS} = 10 V; Figure 2	-	75	А
I _{DM}	peak drain current	T_{mb} = 25 °C; pulsed; $t_p \leq$ 10 $\mu s;$ Figure 3	-	240	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; Figure 1	-	230	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-o	drain diode				
I _S	source (diode forward) current (DC)	T _{mb} = 25 °C	-	75	А
I _{SM}	peak source (diode forward) current	T_{mb} = 25 °C; pulsed; $t_p \leq 10 \ \mu s$	-	240	А
Avalanc	ne ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	unclamped inductive load; I _D = 75 A; t _p = 0.15 ms; V _{DD} \leq 75 V; R _{GS} = 50 Ω ; V _{GS} = 10 V; starting T _j = 25 °C	-	560	mJ

2 of 13

PHP/PHB110NQ08LT

N-channel TrenchMOS™ logic level FET

Table

PHP/PHB110NQ08LT

N-channel TrenchMOS[™] logic level FET

5. Thermal characteristics

1.0

Table 4:	Thermal characteristics						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
R _{th(j-mb)}	thermal resistance from junction to mounting base	Figure 4	-	-	0.65	K/W	
R _{th(j-a)}	thermal resistance from junction to ambient						
	SOT78	vertical in still air	-	60	-	K/W	
	SOT404	mounted on printed-circuit board; minimum footprint; vertical in still air.	-	50	-	K/W	

5.1 Transient thermal impedance

N-channel TrenchMOS[™] logic level FET

6. Characteristics

Table 5:	Characteristics
----------	-----------------

 $T_i = 25 \circ C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static ch	aracteristics					
V _{(BR)DSS}	drain-source breakdown voltage	$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V$				
		T _i = 25 °C	75	-	-	V
		T _j = −55 °C	70	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; \text{ Figure 9}$				
		T _j = 25 °C	1	1.5	2	V
		T _j = 175 °C	0.5	-	-	V
		T _j = −55 °C	-	-	2.2	V
I _{DSS}	drain-source leakage current	$V_{DS} = 75 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	-	10	μA
		T _j = 175 °C	-	-	500	μΑ
I _{GSS}	gate-source leakage current	$V_{GS} = \pm 10 \text{ V}; V_{DS} = 0 \text{ V}$	-	2	100	nA
R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I_D = 25 A; Figure 7 and 8				
		T _j = 25 °C	-	7.2	8.5	mΩ
		T _j = 175 °C	-	15.1	17.9	mΩ
		V_{GS} = 5 V; I _D = 25 A; Figure 7 and 8	-	7.6	9	mΩ
		$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A}; Figure 8$	-	-	9.95	mΩ
Dynamic	characteristics					
Q _{g(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DD} = 60 \text{ V}; V_{GS} = 10 \text{ V};$	-	127.3	-	nC
Q _{gs}	gate-source charge	Figure 13	-	12.5	-	nC
Q _{gd}	gate-drain (Miller) charge		-	54.5	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz;$	-	6631	-	pF
C _{oss}	output capacitance	Figure 11	-	905	-	pF
C _{rss}	reverse transfer capacitance		-	610	-	pF
t _{d(on)}	turn-on delay time	V_{DD} = 30 V; R _L = 1.2 Ω ;	-	47	-	ns
t _r	rise time	V_{GS} = 5 V; R_{G} = 10 Ω	-	185	-	ns
t _{d(off)}	turn-off delay time		-	424	-	ns
t _f	fall time		-	226	-	ns
Source-c	Irain diode					
V _{SD}	source-drain (diode forward) voltage	I _S = 25 A; V _{GS} = 0 V; Figure 12	-	0.77	1.2	V
t _{rr}	reverse recovery time	$I_{S} = 20 \text{ A}; \text{ d}I_{S}/\text{d}t = -100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 0 \text{ V}$	-	70	-	ns
Q _r	recovered charge		-	213	-	nC

N-channel TrenchMOS[™] logic level FET

PHP/PHB110NQ08LT

N-channel TrenchMOS[™] logic level FET

9397 750 12924

PHP/PHB110NQ08LT

N-channel TrenchMOS[™] logic level FET

N-channel TrenchMOS[™] logic level FET

7. Package outline

Fig 14. SOT78 (TO-220AB).

9397 750 12924 Product data

N-channel TrenchMOS[™] logic level FET

Plastic single-ended surface mounted package (Philips version of D²-PAK); 3 leads (one lead cropped)

Fig 15. SOT404 (D²-PAK).

N-channel TrenchMOS[™] logic level FET

8. Revision history

Table 6: Revision history			
Rev	Date	CPCN	Description
01	20040329	-	Product data (9397 750 12924)

N-channel TrenchMOS[™] logic level FET

9. Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2][3]}	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

10. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

11. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

12. Trademarks

TrenchMOS - is a trademark of Koninklijke Philips Electronics N.V.

Contact information

For additional information, please visit http://www.semiconductors.philips.com. For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

9397 750 12924

PHP/PHB110NQ08LT

N-channel TrenchMOS[™] logic level FET

Contents

1	Product profile 1
1.1	Description 1
1.2	Features
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 1
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 4
5.1	Transient thermal impedance
6	Characteristics 5
7	Package outline 9
8	Revision history 11
9	Data sheet status 12
10	Definitions 12
11	Disclaimers 12
12	Trademarks 12

© Koninklijke Philips Electronics N.V. 2004. Printed in The Netherlands

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 29 March 2004

Let's make things better.