

Monolithic Amplifier

PMA-5455+

Mini-Circuits

50Ω 0.05 to 6 GHz

THE BIG DEAL

- Ultra Low Noise Figure, 0.8 dB
- High IP3, 31 dBm typ. at 1GHz
- Wideband, up to 6 GHz
- Single Positive Supply Voltage, 5V, Id=40mA
- Micro-miniature size 3mm x 3mm
- Aqueous washable

APPLICATIONS

- Cellular
- ISM
- GSM
- WCDMA
- LTE
- WiMAX
- WLAN
- UNII and HIPERLAN

PRODUCT OVERVIEW

Mini-Circuits PMA-5455+ is a E-PHEMT* based Ultra-Low Noise MMIC Amplifier operating from 50 MHz to 6 GHz with a unique combination of low noise and high IP3 making this amplifier ideal for sensitive receiver applications. This design operates on a single 5V supply at only 40 mA and is internally matched to 50 Ohms.

KEY FEATURES

Feature	Advantages
Ultra Low Noise, 0.8 dB	Outstanding Noise Figure, measured in a 50 Ohm environment without any external matching
High IP3, 31 dBm	Combining Low Noise and High IP3 makes this MMIC amplifier ideal for Low Noise Receiver Front End (RFE) because it gives the user advantages at both ends of the dynamic range: sensitivity & two- tone spur-free dynamic range
Low Current, 40 mA	At only 40mA, the PMA-5455+ is ideal for remote applications with limited available power or densely packed applications where thermal management is critical.
Broad Band	Operating over a broadband the PMA-5455+ covers the primary wireless communications bands: Cellular, PCS, LTE, WiMAX
Internally Matched	No external matching elements required to achieve the advertised noise and output power over the full band
MCLP Package	Low Inductance, repeatable transitions, excellent thermal pad
Max Input Power, +20 dBm	Ruggedized design operates up to input powers of +20 dBm without the need of an external limiter
High Reliability	Low, small signal operating current of 40mA nominal maintains junction temperatures typically below 110°C at 85°C ground lead temperature

*Enhancement mode Pseudomorphic High Electron Mobility Transistor

Generic photo used for illustration purposes only

CASE STYLE: DQ849

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

> REV. E ECO-011027 PMA-5455+ TH/RS/CP/AM 211209

LOW NOISE, HIGH IP3 Monolithic Amplifier

Mini-Circuits

ELECTRICAL SPECIFICATIONS⁽¹⁾ AT 25°C, ZO=50Ω (REFER TO CHARACTERIZATION CIRCUIT, SEE FIG. 1)

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		0.05		6.0	GHz
DC Voltage (V _d)			5.0		V
DC Current (I _d) ⁽⁶⁾		30	40	60	mA
DC Current (I _{Rbias})			1.2		mA
Noise Figure	0.05 0.5 1.0 2.0 3.0 4.0 5.0		1.8 0.8 0.8 1.0 1.3 1.6 2.1	1.3	dB
	6.0 0.05 0.5 1.0		2.1 2.4 25.1 22.6 19.0	15.4	
Gain	2.0 3.0 4.0 5.0 6.0	12.6	14.0 10.9 8.9 7.1 5.6		dB
Input Return Loss	0.05-0.5 0.5-6		9.0 7.0		dB
Output Return Loss	0.05-0.3 0.3-6		15.0 20.0		dB
Output IP3	0.05 0.5 1.0 2.0 3.0 4.0 5.0 6.0		29.1 30.0 31.0 32.7 33.3 32.9 33.8 34.2		dBm
Output Power @ 1 dB compression (2)	0.05 0.5 1.0 2.0 3.0 4.0 5.0 6.0		18.8 19.3 19.6 19.3 19.1 19.1 19.9 19.8		dBm
DC Current Variation vs. Temperature (3)			-0.072		mA/°C
Thermal Resistance			128		°C/W

MAXIMUM RATINGS⁽⁴⁾

Parameter	Ratings
Operating Temperature (5)	-40°C to 85°C
Storage Temperature	-55°C to 100°C
Channel Temperature	150°C
DC Voltage (Pad 6)	6V
Power Dissipation	500mW
DC Current (Pad 6)	100mA
Bias Current (Pad 7)	10mA
Input Power (7)	20dBm

Measured on Mini-Circuits Characterization test board TB-502+. See Characterization Test Circuit (Fig. 1)
P1dB specified with external current limiting of 50mA;

Capable of higher P1dB at higher current (see Fig. 2) (3) (Current at 85°C - Current at -45°C)/130 (4) Permanent damage may occur if any of these limits are exceeded. These maximum ratings are not intended for continuous normal operation.

(5) Defined with reference to ground pad temperature.(6) Specified DC current consumption is under small signal conditions.

Current will increase with input RF Power. To maintain maximum current consumption, external DC current limiting circuits are required on Vd line.

(7) Maximum input power is specified based upon external Vd current limiting of 60 mA. Maximum input power will degrade without external current limiting.

LOW NOISE, HIGH IP3 Monolithic Amplifier

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

Function	Pad Number	Description (See Application Circuit, Fig. 3)
RF-IN	1	RF input pad
RF-OUT & DC	6	RF output pad (connected to RF-OUT via blocking external cap C2, and Supply voltage Vs via RF Choke L1)
BIAS	7	Bias pad (connected to Vs via Rbias)
GND	paddle in center of bottom	Connected to ground
NOT USED	2,3,4,5,8	No internal connection; recommended use: per PCB Layout PL-299

Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization Test Board TB-502+) Gain, Output power at 1dB compression (P1dB), Output IP3 (OIP3) and Noise Figure measured using Agilent's N5242A PNA-X Microwave network analyzer.

Conditions:

17 0

0

1000

2000

1. Gain: Pin=-25 dBm

2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 5 dBm/tone at output.

3. Vs adjusted for 5V at device (Vd), compensating loss of bias tee.

Fig 2. Output Power and Id vs. Input Power and Frequency.

Output Power at 1dB Compression vs. Frequency Id Current Limited: 50mA and 60mA

3000

Frequency (MHz)

4000

5000

6000

7000

Performance measured on Mini-Circuits Characterization test board TB-502+. See Characterization Test Circuit (Fig. 1). Measurements performed with current (Id) limited as noted.

Mini-Circuits

CHARACTERIZATION TEST CIRCUIT

Monolithic Amplifier

PMA-5455+

Mini-Circuits

RECOMMENDED APPLICATION CIRCUIT (refer to evaluation board for PCB Layout and component values)

Fig 3. Recommended Application Circuit Note: Resistance of L1, $0.1-0.2\Omega$ typically

Fig 4. Id varies as a function of Rbias. The Id current range is defined based upon the specific Rbias value noted in the Application Circuit (Fig 3). Rbias may be adjusted to optimize Id for a customers' application. RF performance will vary accordingly.

PRODUCT MARKING

Marking may contain other features or characters for internal lot control

Monolithic Amplifier

Mini-Circuits

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS CLICK HERE

Performance Data	Data Table graphs, s-parameter data set (.zip file)
Case Style	DQ849 Plastic package, exposed paddle, lead finish: tin-silver over nickel
Tape & Reel Standard quantities available on reel	F104 7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices.
Suggested Layout for PCB Design	PL-299
Evaluation Board	TB-501-6+ (50-5000 MHz)
Environmental Ratings	ENV08T1

ESD RATING

Human Body Model (HBM): Class 1A (250V to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (<100V) in accordance with ANSI/ESD STM5.2-1999; passes 40V

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits