
Atmel ATmega32HVE2/ATmega64HVE2

8-bit AVR Microcontroller with Precise Analog Frontend
for very Accurate Voltage and Current Measurement

DATASHEET
Features

● Single-package fully-integrated
● High precision analog frontend

● 17bit single-ended voltage-ADC
● 7 selectable input channels
● Offset voltage less than ±1LSB

● 18 bit differential current-ADC with
● Programmable gain amplifier
● Comparator Mode
● Offset voltage less than ±5µV

● Temperature measurement with external and internal sensors
● Integrated voltage divider with internal reverse polarity protection for direct

sensing of the battery voltage
● Interface

● LIN physical layer according to LIN 2.0, 2.1 and SAEJ2602-2
● Fulfils the OEM “Hardware Requirements for LIN in Automotive Applications

Rev. 1.1”
● LIN hardware UART
● Advanced ESD and EMC performance
● High-speed Mode up to 115kBaud

● Microcontroller
● High performance, low power AVR 8-bit microcontroller

● 32bit math. extension module (+, –, x, /)
● Memory

● 32K/64K in-system self-programmable flash memory
● 1K EEPROM / 4K SRAM

● Power
● Supply voltage –27V to +40V
● Extreme low power consumption

● Others
● Package: QFN48, 7x7mm2

● Temperature range: –40°C to +125°C
 8096C–AVR–01/13

1. Description
With the ATmega32HVE2/ATmega64HVE2 Atmel® provides an 8-bit AVR® microcontroller with very precise analog frontend for
voltage and current measurement and 32bit computing power. The circuit is a complete single-package system solution for
applications like, e.g., 12V lead acid or Li-ion battery monitoring or particle filtering in automotive applications.
The device includes 2 dies, the first die (AVR MCU) with the very precise analog frontend consisting of
● a 17bit and a 18bit sigma delta ADC
● programmable gain amplifier with various chopper modes and extreme low offset
● 8-bit microcontroller with 32bit math-extensions module and 32/64Kbytes flash memory

and a LIN(1) system basis chip (LIN SBC) including
● LIN transceiver according to the LIN2.0, 2.1 and SAEJ2602-2 standards
● 3.3V low drop voltage regulator
● window watchdog
● integrated voltage divider with reverse polarity protection for very precise sensing of the battery voltage

The device includes the same LIN SBC die as used in the Atmel ATA6628 LIN system basis chip from Atmel.
Note: 1. LIN: Local Interconnect Network

Figure 1-1. Atmel ATmega32HVE2/ATmega64HVE2 Block Diagram

17-bit
Σ Δ ADC

Timer/Counter

LIN SBC

AVR MCU

Oscillators

Temperature Reference

Watchdog

Voltage
Regulator

LIN
Transceiver

Supervision
and

Diagnostics

Low-power
AVR CPU

32 bit
math.

extension

Shunt
12V

Automotive
Powernet

LIN Bus

+ - 18-bit
Σ Δ ADC

M
U

X

PGA
2Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

2. Pin Configurations

Figure 2-1. Pinout QFN-48

2.1 Pin Descriptions

2.1.1 VCC

Digital supply voltage.

2.1.2 AVCC

Analog supply voltage.

2.1.3 VREF

Internal Voltage Reference for external decoupling. For details, see Section 27. “Band Gap Reference and Temperature
Sensor” on page 161.

2.1.4 VREFGND

Ground for decoupling of Internal Voltage Reference. Do not connect to GND on PCB.

2.1.5 GND

Ground

AVCC

G
N

D
G

N
D

V
C

C

M
O

D
E

T
M

P
V

R
E

G

V
R

E
G V
S

V
B

AT E
N

N
T

R
IG

N
V

1

G
N

D

N
V

2

P
V

2

V
R

E
F

V
R

E
F

G
N

D

P
I

N
I

G
N

D

V
C

C

R
E

S
E

T

1

48 47 46 45 44 43 42 41 40 39 38 37

13 14 15 16 17 18 19 20 21 22 23 24

2

3

4

5

6

7

8

9

10

11

12

36

35

34

33

32

31

30

29

28

27

26

25

ADC0/PCINT0) PA0

ADC1/PCINT1) PA1

(PROGEN3/SII/EXINT0/ICP1/MISO/PCINT9) PB7

(PROGEN2/SDI/MOSI/PCINT8) PB6

(PROGEN1/SDO/SCK/PCINT7) PB5

(PROGEN0/SIO/SS/PCINT6) PB4

(T1/TXD/PCINT5) PB3

(SCI/CKOUT/PCINT4) PB2

(RXD/PCINT3) PB1

(T0/FH/PCINT2) PB0

WD_OSC

NRES

TXD

SP_MODE

PV1

DIV_ON

RXD

LIN
3Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

2.1.6 Port A (PA1..PA0)

Port A serves as a 2-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port A pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port A is connected to the input MUX of the Voltage ADC. To avoid any disturbance from Port A pins when doing high accuracy
VADC measurements, is not recommended to connect noisy digital signals to these pins.
Port A also serves the functions of various special features of the Atmel® ATmega32HVE2/ATmega64HVE2 as listed in Section
21.3.1 “Alternate Functions of Port A” on page 85.

2.1.7 Port B (PB7..0)

Port B is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port B pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the Atmel
ATmega32HVE2/ATmega64HVE2 as listed in Section 21.3.2 “Alternate Functions of Port B” on page 86.

2.1.8 PV2/NV2

Filtered positive/negative input from resistor divider connected to VS. Used by the Voltage ADC to measure the battery pack
voltage. For details, see Section 26. “ADC - Analog to Digital Converter” on page 138.

2.1.9 PI/NI

Filtered positive/negative input from external current sense resistor. Used by the Current ADC to measure charge/discharge
currents flowing in the battery pack. For details, see Section 26. “ADC - Analog to Digital Converter” on page 138.

2.1.10 RESET/dw

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not
running. The minimum pulse length is given in Section 31.5 “External Interrupt Characteristics” on page 198. Shorter pulses are
not guaranteed to generate a reset. This pin is also used as debugWIRE communication pin.

2.1.11 VS

VS represents the power supply to the chip.The LIN operating voltage is VS = 5V to 27V. An undervoltage detection is
implemented to disable data transmission if VS falls below VSth in order to avoid false bus messages. After switching on VS, the
IC starts in Fail-safe Mode, and the voltage regulator is switched on (i.e., 3.3V/50mA output capability).
The supply current is typically 10µA in Sleep Mode and 40µA in Silent Mode.

2.1.12 VREG

The internal 3.3V voltage regulator is capable of driving loads up to 50mA. It is able to supply the microcontroller and other ICs
on the PCB and is protected against overloads by means of current limitation and overtemperature shut-down. Furthermore, the
output voltage is monitored and will cause a reset signal at the NRES output pin if it drops below a defined threshold Vthun. To
boost up the maximum load current, an external NPN transistor may be used, with its base connected to the VREG pin and its
emitter connected to PVREG.

2.1.13 PVREG

The PVREG is the sense input pin of the 3.3V voltage regulator. For normal applications (i.e. when only using the internal output
transistor), this pin must be connected to the VREG pin. If an external boosting transistor is used, the PVREG pin must be
connected to the output of this transistor, i.e, its emitter terminal.
4Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

2.1.14 LIN

A low-side driver with internal current limitation and thermal shutdown and an internal pull-up resistor compliant with the LIN 2.x
specification is implemented. The allowed voltage range is between –27V and +40V. Reverse currents from the LIN bus to VS
are suppressed, even in the event of GND shifts or battery disconnection. LIN receiver thresholds are compatible with the LIN
protocol specification. The fall time from recessive to dominant bus state and the rise time from dominant to recessive bus state
are slope controlled.

2.1.15 TXD

In Normal Mode the TXD pin is the microcontroller interface used to control the state of the LIN output. TXD must be pulled to
ground in order to have a low LIN-bus. If TXD is high or not connected (internal pull-up resistor), the LIN output transistor is
turned off, and the bus is in recessive state. During Fail-safe Mode, this pin is used as output and is signalling the fail-safe
source. It is current-limited to ITXDwake (Section 10. “Electrical Characteristics LIN SBC” on page 25ff).

2.1.16 RXD

This output pin reports the state of the LIN-bus to the microcontroller. LIN high (recessive state) is reported by a high level at
RXD; LIN low (dominant state) is reported by a low level at RXD. The output has an internal pull-up resistor with typically 5kΩ to
PVREG. The AC characteristics can be defined with an external load capacitor of 20pF. The output is short-circuit protected.
RXD is switched off in Unpowered Mode (i.e., VS = 0V). During Fail-safe Mode it is signalling the fail-safe source.

2.1.17 EN

The Enable Input pin controls the operation mode of the device. If EN is high, the circuit is in Normal Mode, with transmission
paths from TXD to LIN and from LIN to RXD both active. The VREG voltage regulator operates with 3.3V/5V/50mA output
capability.
If EN is switched to low while TXD is still high, the device is forced to Silent Mode. No data transmission is then possible, and
the current consumption is reduced to IVS typ. 40µA. The VREG regulator has its full functionality.
If EN is switched to low while TXD is low, the device is forced to Sleep Mode. No data transmission is possible, and the voltage
regulator is switched off.

2.1.18 MODE

With the pin MODE you can enable / disable the watchdog of the LIN SBC. Connect the MODE pin directly or via an external
resistor to GND for normal watchdog operation. To debug the software of the connected microcontroller, connect MODE pin to
PVREG and the watchdog is switched off.
Note: If you do not use the watchdog from the LIN SBC, connect pin MODE directly to PVREG.

2.1.19 TM

The TM pin is used for final production measurements at Atmel®. In normal application, it has to be always connected to GND.

2.1.20 NRES

The Reset Output pin, an open drain output, switches to low during VREG undervoltage or a watchdog failure generated by the
LIN SBC.

2.1.21 WD_OSC

The WD_OSC Output pin provides a typical voltage of 1.2V, which supplies an external resistor with values between 34kΩ and
120kΩ to adjust the watchdog oscillator time. If the watchdog is disabled, this voltage is switched off and you can either tie to
GND or leave this pin open. In the ATmega64HVE2 Operating circuit this pin is left open.

2.1.22 NTRIG

The NTRIG Input pin is the trigger input for the window watchdog of the LIN SBC. A pull-up resistor is implemented. A negative
edge triggers the watchdog. The trigger signal (low) must exceed a minimum time ttrigmin to generate a watchdog trigger (see
also Section 9. “Watchdog” on page 23).
5Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

2.1.23 DIV_ON

The DIV_ON pin is a low voltage input. It is used to switch on or off the internal voltage divider PV1 output directly with no time
limitation (see Table 2-1). It is switched on if DIV_ON is high or it is switched off if DIV_ON is low. In Sleep Mode the DIV_ON
functionality is disabled and PV1 is off. An internal pull-down resistor is implemented.

2.1.24 VBATT

The VBAT is a high voltage input pin to supply the internal voltage divider. In an application with battery voltage monitoring, this
pin can be connected to VBattery via, e.g., a 47Ω resistor in series and a 10nF capacitor to GND.

2.1.25 PV1

PV1 is the voltage divider output of the voltage divider between VBAT and NV1. The divider ratio is 1:24.
For applications with battery monitoring, this pin is directly connected to the ADC of a microcontroller. For buffering the ADC
input an external capacitor might be needed. This pin guarantees a voltage and temperature stable output of a VBattery ratio.
The PV1 output pin is controlled by the DIV_ON input pin.

2.1.26 SP_MODE

The SP_MODE pin is a low-voltage input. High-speed Mode of the transceiver can be activated via a high level during Normal
Mode. Return to LIN 2.x Transceiver Mode with slope control is possible if you switch the SP_MODE pin to low.

2.1.27 NV1

This pin is directly connected to the base of the voltage divider. For battery voltage sensing this pin NV1 and pin PV1 should be
directly connected to the two inputs of an AD-converter. NV1 should be additional connected to GND.

2.1.28 NC

Not connected pins are internally connected to GND.

Table 2-1. Table of Voltage Divider
Mode of Operation Input DiV_ON Voltage Divider Output PV1

Fail-safe/Normal/
High-speed/Silent

0 Off
1 On

Sleep
0 Off
1 Off
6Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

3. Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Parameters Symbol Min. Typ. Max. Unit
Supply voltage VS VS –0.3 +40 V
Pulse time ≤ 500ms
Ta = 25°C
Output current IVREG ≤ 50mA

VS +40 V

Pulse time ≤ 2min
Ta = 25°C
Output current IVREG ≤ 50mA

VS 27 V

VBAT (with 47Ω/10nF)
DC voltage
Transient voltage due to ISO7637 3a, 3b
(coupling 1nF)

–1
–150

+40
+100

V
V

LIN, VBAT
- DC voltage –27 +40 V
Logic pins (RxD, TxD, EN, NRES, NTRIG,
WD_OSC, MODE, TM, DIV_ON,
SP_MODE, PV1)

–0.3 VREG + 0.5V V

Pin NV1 –0.3 +0.3 V
Output current NRES INRES +2 mA
PVREG DC voltage
VREG DC voltage

–0.3
–0.3

+5.5
+6.5

V
V

Logic pins (PA0-PA1, PI, NI, PB0-PB7,
PV2, NV2) –0.5 VCC + 0.5 V

RESET –0.5 +13 V
VREF –0.5 VCC + 0.5 V
VREFGND
Connected via internal metal connection to
GND. Do not connect external to GND.

–0.5 +0.5 mA

VCC/AVCC –0.3 +4.5 V
ESD according to IBEE LIN EMC
Test Spec. 1.0 following IEC 61000-4-2
- Pin VS, LIN to GND
- Pin VBAT (10nF) to GND

±6 KV

HBM ESD
ANSI/ESD-STM5.1
JESD22-A114
AEC-Q100 (002)
MIL-STD-883 (M3015.7)

±3 KV

CDM ESD STM 5.3.1 ±750 V
MM ESD
EIA/JESD22-A115
ESD STM5.2
AEC-Q100 (002)

±200 V

ESD HBM following STM5.1 with 1.5kΩ
100pF
- Pin VS, LIN, VBAT to GND

±6 KV
7Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Junction temperature LIN SBC Tj –40 +150 °C
Junction temperature AVR MCU Tj –40 +125 °C
Storage temperature Ts –55 +150 °C

3. Absolute Maximum Ratings (Continued)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Parameters Symbol Min. Typ. Max. Unit

4. Thermal Characteristics
Parameters Symbol Min. Typ. Max. Unit
Thermal shutdown of VREG regulator 150 165 170 °C
Thermal shutdown of LIN output 150 165 170 °C
Thermal shutdown hysteresis 10 °C
Thermal resistance junction to heat slug Rthjc 6 K/W
Thermal resistance junction to ambient(1) Rthja 30 K/W
Note: 1. JEDEC Multi-layer PCB, air flow.
8Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Atmel LIN System Basis Chip (LIN SBC)

LIN Bus Transceiver with 3.3V Regulator and Watchdog

PRELIMINARY DATASHEET
Features

● Master and Slave Operation Possible
● Supply Voltage –27V to +40V
● Operating Voltage VS = 5V to 27V
● Typically 10µA Supply Current During Sleep Mode
● Typically 40µA Supply Current in Silent Mode
● Linear Low-drop Voltage Regulator:

● Normal, Fail-safe, and Silent Mode
● VREG = 3.3V ±2%

● In Sleep Mode VREG is Switched Off
● VREG-Undervoltage Detection (4ms Reset Time) and Watchdog Reset Logical

Combined at Open Drain Output NRES
● High-speed Mode Up to 115kBaud
● Internal 1:24 Voltage Divider for VBattery Sensing
● Negative Trigger Input for Watchdog
● Boosting the Voltage Regulator Possible with an External NPN Transistor
● LIN Physical Layer According to LIN 2.0, 2.1 and SAEJ2602-2
● Wake-up Capability via LIN-bus
● Bus Pin is Overtemperature and Short-circuit Protected versus GND and Battery
● Adjustable Watchdog Time via External Resistor
● Advanced EMC and ESD Performance
● Fulfills the OEM “Hardware Requirements for LIN in Automotive Applications

Rev. 1.1”
● Atmel® ATA6628 LIN SBC inside
 8096C–AVR–01/13

5. Description
The Atmel® LIN SBC is a fully integrated LIN transceiver, which complies with the LIN 2.0, 2.1 and SAEJ2602-2 specifications.
It has a low-drop voltage regulator for 3.3V/50mA output and a window watchdog. The voltage regulator is able to source 50mA,
but the output current can be boosted by using an external NPN transistor. This chip combination makes it possible to develop
inexpensive, simple, yet powerful slave and master nodes for LIN-bus systems. Atmel LIN SBC is designed to handle the low-
speed data communication in vehicles, e.g., in convenience electronics. Improved slope control at the LIN-driver ensures
secure data communication up to 20kBaud. Sleep Mode and Silent Mode guarantee very low current consumption.

Figure 5-1. Block Diagram

High
Speed
Mode

Adjustable
Watchdog
Oscillator

Short Circuit and
Overtemperature

Protection
TXD

Time-out
Timer

Debounce
Time

Internal Testing
Unit

Control Unit

Slew Rate Control

Wake-up
Bus Timer

Mode Select
Undervoltage

Reset

Normal/Silent/
Fail-safe Mode

3.3V/50 mA/±2%

RF Filter

Watchdog

RXD

NTRIGNV1PV1

PVREG

PVREG

PVREG

TMMODE

EN

TXD

SP_MODE

Receiver
Normal and

Fail-safe
Mode

LIN

WD_OSC

NRES

PVREG

VREG

VS

DIV_ON

VBAT

5k

GND

Control
10Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

6. Functional Description

6.1 Pin Functions
For pin functions of the LIN SBC please refer to Section 2.1 “Pin Descriptions” on page 3.

6.2 Physical Layer Compatibility
Since the LIN physical layer is independent from higher LIN layers (e.g., the LIN protocol layer), all nodes with a LIN physical
layer according to revision 2.x can be mixed with LIN physical layer nodes, which, according to older versions (i.e., LIN 1.0,
LIN 1.1, LIN 1.2, LIN 1.3), are without any restrictions.

6.3 Wake-u Events from Sleep or Silent Mode
● LIN-bus
● EN pin

6.4 Ground Shift
The IC does not affect the LIN-bus in the event of GND disconnection. It is able to handle a ground shift up to 11.5% of VS. This
is the mandatory system ground pin.

6.5 TXD Dominant Time-out Function
The TXD input has an internal pull-up resistor. An internal timer prevents the bus line from being driven permanently in
dominant state. If TXD is forced to low for longer than tDOM > 27ms, the LIN-bus driver is switched to recessive state.
Nevertheless, when switching to Sleep Mode, the actual level at the TXD pin is relevant.
To reactivate the LIN bus driver, switch TXD to high (> 10µs).
11Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

7. Modes of Operation

Figure 7-1. Modes of Operation

7.1 Normal Mode
This is the normal transmitting and receiving mode. The voltage regulator is active and can source up to 50mA.
The undervoltage detection is activated. The watchdog needs a trigger signal from NTRIG to avoid resets at
NRES. If NRES is switched to low, the IC changes its state to Fail-safe Mode.

Table 7-1. Table of Modes
Mode of

Operation Transceiver Pin LIN VREG Pin Mode Watchdog Pin WD_OSC
Unpowered Off Recessive On GND On On

Fail-safe Off Recessive 3.3V GND On 1.23V
Normal/ High-

speed On TXD depending 3.3V GND On 1.23V

Silent Off Recessive 3.3V GND Off 0V
Sleep Off Recessive 0V GND Off 0V

Unpowered Mode
(See Section 4.6)

a: VS > VSthF
b: VS < VSthU
c: Bus wake-up event

Fail-safe Mode
VREG: 3.3V/50mA

with undervoltage monitoring
Communication: OFF

Watchdog: ON

Silent Mode
VREG: 3.3V/50mA

with undervoltage monitoring
Communication: OFF

Watchdog: OFF

Sleep Mode
VREG: switched off

Communication: OFF
Watchdog: OFF

Go to silent command

a

TXD = 0
EN = 0

TXD = 1
EN = 0

EN = 1EN = 1

EN = 1

b

b

b

c + dd

c

b

Normal Mode

VREG: 3.3V/50mA
with undervoltage detection

watchdog: ON

High level at
pin SP_MODE:

High-speed Mode
Transceiver ≤ 115kBaud

LIN 2.1
Transceiver
≤ 20kBaud

TXD time-out
timer on

Go to sleep command

d: NRES switches to low

Go to normal command
12Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

7.2 Silent Mode
A falling edge at EN when TXD is high switches the IC into Silent Mode. The TXD Signal has to be logic high during the Mode
Select window (see Figure 7-2). The transmission path is disabled in Silent Mode. It is possible to switch on the voltage divider
via pin DIV_ON. The overall supply current from VBat is a combination of the IVSsi = 40µA plus the VREG regulator output current
IVREG.
The 3.3V regulator with 2% tolerance can source up to 50mA. The internal slave termination between the LIN pin and the VS
pin is disabled in Silent Mode to minimize the current consumption in the event that the LIN pin is short-circuited to GND. Only a
weak pull-up current (typically 10µA) between the LIN pin and the VS pin is present. Silent Mode can be activated
independently from the actual level on the LIN. If an undervoltage condition occurs, NRES is switched to low, and the IC
changes its state to Fail-safe Mode.
A voltage less than the LIN Pre_Wake detection VLINL at the LIN pin activates the internal LIN receiver and starts the wake-up
detection timer.

Figure 7-2. Switch to Silent Mode

Delay time silent mode
td_silent = maximum 20μs

Mode select window

LIN switches directly to recessive mode

td = 3.2μs

LIN

VREG

NRES

TXD

EN

Normal Mode Silent Mode
13Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

A falling edge at the LIN pin followed by a dominant bus level maintained for a certain time period (tbus) and the following rising
edge at the LIN pin (see Figure 7-3) result in a remote wake-up request, which is only possible if TXD is high. The device
switches from Silent Mode to Fail-safe Mode. The internal LIN slave termination resistor is switched on. The remote wake-up
request is indicated by a low level at the RXD pin to interrupt the microcontroller (see Figure 7-3). EN high can be used to switch
directly to Normal Mode.

Figure 7-3. LIN Wake-up from Silent Mode

Watchdog off Start watchdog lead time tdWatchdog

Undervoltage detection active

Silent mode 3.3V/50mA Fail safe mode 3.3V/50mA Normal mode

Low

Fail-safe mode Normal mode

EN High

Node in silent mode

HighHigh

NRES

EN

VREG
voltage

regulator

RXD

LIN bus

Bus wake-up filtering time
tbus

TXD

Don't care
14Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

7.3 Sleep Mode
A falling edge at EN when TXD is low switches the IC into Sleep Mode. The TXD Signal has to be logic low during the Mode
Select window (Figure 7-4). In order to avoid any influence to the LIN-pin during switching into sleep mode it is possible to
switch the EN up to 3.2µs earlier to Low than the TXD. Therefore, the best an easiest way are two falling edges at TXD and EN
at the same time. The transmission path is disabled in Sleep Mode. The supply current IVSsleep from VBat is typically 10µA.
The PV1 output and the VREG regulator are switched off. NRES and RXD are low. The internal slave termination between the
LIN pin and VS pin is disabled to minimize the current consumption in the event that the LIN pin is short-circuited to GND. Only
a weak pull-up current (typically 10µA) between the LIN pin and the VS pin is present. Sleep Mode can be activated
independently from the current level on the LIN.
A voltage less than the LIN Pre_Wake detection VLINL at the LIN pin activates the internal LIN receiver and starts the wake-up
detection timer.

Figure 7-4. Switch to Sleep Mode

Delay time sleep mode
td_sleep = maximum 20μs

LIN switches directly to recessive mode

td = 3.2μs

LIN

VREG

NRES

TXD

EN

Sleep Mode
Normal Mode

Mode select window
15Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

A falling edge at the LIN pin followed by a dominant bus level maintained for a certain time period (tbus) and a rising edge at pin
LIN result in a remote wake-up request. The device switches from Sleep Mode to Fail-safe Mode.The VREG regulator is
activated, and the internal LIN slave termination resistor is switched on. The remote wake-up request is indicated by a low level
at the RXD pin to interrupt the microcontroller (see Figure 7-5).
EN high can be used to switch directly from Sleep/Silent to Fail-safe Mode. If EN is still high after VREG ramp up and
undervoltage reset time, the IC switches to the Normal Mode.

Figure 7-5. LIN Wake Up from Sleep Mode

Regulator wake-up time

Off state
On state

Low

Fail-safe Mode Normal Mode

EN High

Microcontroller

Reset
time

Low or floating

Floating

Watchdog

NRES

EN

VREG
voltage

regulator

RXD

LIN bus

Bus wake-up filtering time
tbus

TXD

Watchdog off Start watchdog lead time td

start-up time delay
16Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

7.4 Sleep or Silent Mode: Behavior at a Floating LIN-bus or a Short Circuited LIN to GND
In Sleep or in Silent Mode the device has a very low current consumption even during shortcircuits or floating conditions on the
bus. A floating bus can arise if the Master pull-up resistor is missing, e.g., if it is switched off when the LIN- Master is in sleep
mode or even if the power supply of the Master node is switched off.
In order to minimize the current consumption IVS in sleep or silent mode during voltage levels at the LIN-pin below the LIN pre-
wake threshold, the receiver is activated only for a specific time tmon. If tmon elapses while the voltage at the bus is lower than
Pre-wake detection low (VLINL) and higher than the LIN dominant level, the receiver is switched off again and the circuit changes
back to sleep respectively Silent Mode. The current consumption is then the result of IVSsleep or IVSsilent plus ILINwake. If a
dominant state is reached on the bus no wake-up will occur. Even if the voltage rises above the Pre-wake detection high (VLINH),
the IC will stay in sleep respectively silent mode (see Figure 7-6).
This means the LIN-bus must be above the Pre-wake detection threshold VLINH for a few microseconds before a new LIN wake-
up is possible.

Figure 7-6. Floating LIN-bus During Sleep or Silent Mode

IVSsleep/silent IVSsleep

IVSfail + ILINwake

IVSsleep

VBUSdom

VLINL

IVS

tmon

LIN Pre-wake

LIN dominant state
LIN BUS

Mode of
operation

Int. Pull-up
Resistor

RLIN

Wake-up Detection Phase

off (disabled)

Sleep/Silent Mode Sleep/Silent Mode
17Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

If the Atmel® LIN SBC is in Sleep or Silent Mode and the voltage level at the LIN-bus is in dominant state (VLIN < VBUSdom) for a
time period exceeding tmon (during a short circuit at LIN, for example), the IC switches back to Sleep Mode respectively Silent
Mode. The VS current consumption then consists of IVSsleep or IVSsilent plus ILINWAKE. After a positive edge at pin LIN the IC
switches directly to Fail-safe Mode (see Figure 7-7).

Figure 7-7. Short Circuit to GND on the LIN-bus During Sleep- or Silent Mode

Sleep/Silent
Mode

IVSsleep/silent

IVSfail
+ ILINwake

IVSsleep/silent

VBUSdom

VLINL

LIN Pre-wake

LIN dominant state
LIN BUS

IVS

Mode of
operation

Int. Pull-up
Resistor

RLIN
off (disabled) on (enabled)

Wake-up Detection PhaseSleep/Silent Mode Fail-Safe Mode

tmon

tmon

18Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

7.5 Fail-safe Mode
The device automatically switches to Fail-safe Mode at system power-up. The voltage regulator is switched on
(VREG = 3.3V/2%/50mA) (see Figure 8-1 on page 22). The NRES output switches to low for tres = 4ms and gives a reset to the
microcontroller. LIN communication is switched off. The IC stays in this mode until EN is switched to high. The IC then changes
to Normal Mode. A power down of VBat (VS < VSthU) during Silent or Sleep Mode switches the IC into Fail-safe Mode after power
up. A low at NRES switches into Fail-safe Mode directly. During Fail-safe Mode, the TXD pin is an output and signals the fail-
safe source. The watchdog is switched on.
The LIN SBC can operate in different Modes, like Normal, Silent, or Sleep Mode. The functionality of these modes is described
in Table 7-2.

A wake-up event from either Silent or Sleep Mode will be signalled to the microcontroller using the two pins RXD and TXD. The
coding is shown in Table 7-3.
A wake-up event will lead the IC to the Fail-safe Mode.

Table 7-2. TXD, RXD Depending from Operation Modes
Different Modes TXD RXD
Fail-safe Mode Signalling fail-safe sources (see Table 7-3 and Table 7-4)
Normal Mode Follows data transmission
Silent Mode High High

Table 7-3. Signalling Fail-safe Sources
Fail-safe Sources TXD RXD
LIN wake-up (pin LIN) Low Low
VSth (battery) undervoltage detection High Low

Table 7-4. Signalling in Fail-safe Mode after Reset (NRES was Low), Shows the Reset Source at TXD and RXD Pins
Fail-safe Sources TXD RXD
VREG undervoltage at NRES High Low
Watchdog reset at NRES High High
19Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

7.6 Unpowered Mode
If you connect battery voltage to the application circuit, the voltage at the VS pin increases according to the block capacitor (see
Figure 8-1 on page 22). After VS is higher than the VS undervoltage threshold VSth, the IC mode changes from Unpowered
Mode to Fail-safe Mode. The VREG output voltage reaches its nominal value after tVREG. This time, tVREG, depends on the
VREG capacitor and the load.
The NRES is low for the reset time delay treset. During this time, treset, no mode change is possible.
IF VS drops below VSth, then the IC switches to Unpowered Mode. The behavior of VREG, NRES and LIN is shown in Figure 7-
8. The watchdog needs to be triggered.

Figure 7-8. Voltage Regulator: VREG versus VS

7.7 High-speed Mode
If SP_MODE pin is high and the IC is in Normal Mode, the slew rate control is switched off. The slope time of the LIN falling
edge is tS_Fall < 2µs. The slope time of the LIN rising edge strongly depends on the LIN capacitive and resistive load. To achieve
a high baud rate it is recommended to use a small resistor (500Ω) and a low capacitor. This allows very fast data transmission
up to 115kBaud, e.g., for electronic control (ECU) tests and microcontroller program or data download. In this mode superior
EMC performance is not guaranteed.

0 .0

0 .5
1.0

1.5

2 .0
2 .5

3 .0

3 .5
4 .0

4 .5

5.0
5.5

6 .0

0 .0 0 .5 1.0 1.5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5.0 5.5 6 .0

VS in V

V
in

 V

VREG

LIN

NRES
VS

Regulator drop voltage VD
20Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

8. Wake-up Scenarios from Silent or Sleep Mode

8.1 Remote Wake-up via Dominant Bus State
A voltage less than the LIN Pre_Wake detection VLINL at the LIN pin activates the internal LIN receiver and starts the wake-up
detection timer.
A falling edge at the LIN pin followed by a dominant bus level VBUSdom maintained for a certain time period (tBUS) and a rising
edge at pin LIN result in a remote wake-up request. A remote wake up from Silent Mode is possible only if TXD is high. The
device switches from Silent or Sleep Mode to Fail-safe Mode. The VREG voltage regulator is/remains activated and the internal
slave termination resistor is switched on. The remote wake-up request is indicated by a low level at the RXD pin to generate an
interrupt for the microcontroller and a strong pull down at TXD.

8.2 Wake-up Source Recognition
The device can distinguish between different wake-up sources (see Table 7-4 on page 19).
The wake-up source can be read on the TXD and RXD pin in Fail-safe Mode. These flags are immediately reset if the
microcontroller sets the EN pin to high (see Figure 7-3 on page 14 and Figure 7-5 on page 16) and the IC is in Normal Mode.

8.3 Fail-safe Features
● During a short-circuit at LIN to VBattery, the output limits the output current to IBUS_lim. Due to the power dissipation, the chip

temperature exceeds TLINoff, and the LIN output is switched off. The chip cools down and after a hysteresis of Thys,
switches the output on again. RXD stays on high because LIN is high. During LIN overtemperature switch-off, the VREG
regulator works independently.

● During a short-circuit from LIN to GND the IC can be switched into Sleep or Silent Mode and even in this case the current
consumption is lower than 45µA in Sleep Mode and lower than 80µA in Silent Mode. If the short-circuit disappears, the IC
starts with a remote wake-up.

● Sleep or Silent Mode: During a floating condition on the bus the IC switches back to Sleep Mode/Silent Mode
automatically and thereby the current consumption is lower than 45µA/80µA.

● The reverse current is < 2µA at the LIN pin during loss of VBat. This is optimal behavior for bus systems where some
slave nodes are supplied from battery or ignition.

● During a short circuit at VREG, the output limits the output current to IVREGlim. Because of undervoltage, NRES switches
to low and sends a reset to the microcontroller if NRES is connected to the microcontroller. The IC switches into Fail-safe
Mode. If the chip temperature exceeds the value TVREGoff, the VREG output switches off. The chip cools down and after a
hysteresis of Thys, switches the output on again. Because of the Fail-safe Mode, the VREG voltage will switch on again
although EN is switched off from the microcontroller. The microcontroller can start with its normal operation.

● EN pin provides a pull-down resistor to force the transceiver into recessive mode if EN is disconnected.
● RXD pin is set floating if VBat is disconnected.
● TXD pin provides a pull-up resistor to force the transceiver into recessive mode if TXD is disconnected.
● If TXD is short-circuited to GND, it is possible to switch to Sleep Mode via ENABLE.
● If the WD_OSC pin has a short circuit to GND and the NTRIG signal has a period time > 27ms a reset is guaranteed.
● If the resistor at the WD_OSC pin is disconnected and the NTRIG signal has a period time < 46ms a reset is guaranteed.
● If there is no NTRIG signal and short circuit at WD_OSC the NRES switches to low after 90ms. For an open circuit (no

resistor) at WD_OSC it switches to low after typ. 390ms.
21Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

8.4 Voltage Regulator
The voltage regulator needs an external capacitor for compensation and for smoothing the disturbances from the
microcontroller. It is recommended to use an electrolythic capacitor with C > 1.8µF and a ceramic capacitor with C = 100nF.
The values of these capacitors can be varied by the customer, depending on the application.
The main power dissipation of the IC is created from the VREG output current IVREG, which is needed for the application.

Figure 8-1. VREG Voltage Regulator: Ramp-up and Undervoltage Detection

For microcontroller programming, it may be necessary to supply the VREG output via an external power supply while the VS Pin
of the system basis chip is disconnected. This behavior is no problem for the system basis chip.

NRES

3.3V

t

t

t

VS

3.3V
Vthun

Tres_fTResetTVREG

3.8V

12V

VREG
22Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

9. Watchdog
The watchdog anticipates a trigger signal from the microcontroller at the NTRIG (negative edge) input within a time window of
Twd. The trigger signal must exceed a minimum time ttrigmin > 4µs. If a triggering signal is not received, a reset signal will be
generated at output NRES. The timing basis of the watchdog is provided by the internal oscillator. Its time period, Tosc, is
adjustable via the external resistor Rwd_osc (34kΩ to 120kΩ).
During Silent or Sleep Mode the watchdog is switched off to reduce current consumption.
The minimum time for the first watchdog pulse is required after the undervoltage reset at NRES disappears. It is defined as lead
time td. After wake up from Sleep or Silent Mode, the lead time td starts with the negative edge of the RXD output.

9.1 Typical Timing Sequence with RWD_OSC = 51kΩ
The trigger signal Twd is adjustable between 20ms and 64ms using the external resistor RWD_OSC.
For example, with an external resistor of RWD_OSC = 51kΩ ±1%, the typical parameters of the watchdog are as follows:
tosc = 0.405 × RWD_OSC – 0.0004 × (RWD_OSC)2 (RWD_OSC in kΩ ; tosc in µs)
tOSC = 19.6µs due to 51kΩ
td = 7895 × 19.6µs = 155ms
t1 = 1053 × 19.6µs = 20.6ms
t2 = 1105 × 19.6µs = 21.6ms
tnres = constant = 4ms
After ramping up the battery voltage, the 5V regulator is switched on. The reset output NRES stays low for the time treset
(typically 4ms), then it switches to high, and the watchdog waits for the trigger sequence from the microcontroller. The lead time,
td, follows the reset and is td = 155ms. In this time, the first watchdog pulse from the microcontroller is required. If the trigger
pulse NTRIG occurs during this time, the time t1 starts immediately. If no trigger signal occurs during the time td, a watchdog
reset with tNRES = 4ms will reset the microcontroller after td = 155ms. The times t1 and t2 have a fixed relationship. A triggering
signal from the microcontroller is anticipated within the time frame of t2 = 21.6ms. To avoid false triggering from glitches, the
trigger pulse must be longer than tTRIG,min > 200ns. This slope serves to restart the watchdog sequence. If the triggering signal
fails in this open window t2, the NRES output will be drawn to ground. A triggering signal during the closed window t1
immediately switches NRES to low.

Figure 9-1. Timing Sequence with RWD_OSC = 51kΩ

tnres = 4ms
Undervoltage Reset Watchdog Reset

treset = 4ms

ttrig > 4μs

t1 = 20.6ms t2 = 21ms

t2t1

twd

td = 155ms

VREG
3.3V

NTRIG

NRES
23Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

9.2 Worst Case Calculation with RWD_OSC = 51kΩ
The internal oscillator has a tolerance of 20%. This means that t1 and t2 can also vary by 20%. The worst case calculation for
the watchdog period twd is calculated as follows.
The ideal watchdog time twd is between the maximum t1 and the minimum t1 plus the minimum t2.
t1,min = 0.8 × t1 = 16.5ms, t1,max = 1.2 × t1 = 24.8ms
t2,min = 0.8 × t2 = 17.3ms, t2,max = 1.2 × t2 = 26ms
twdmax = t1min + t2min = 16.5ms + 17.3ms = 33.8ms
twdmin = t1max = 24.8ms
twd = 29.3ms ±4.5ms (±15%)
A microcontroller with an oscillator tolerance of ±15% is sufficient to supply the trigger inputs correctly.

Table 9-1. Typical Watchdog Timings

RWD_OSC
kΩ

Oscillator
Period
tosc/µs

Lead
Time
td/ms

Closed
Window

t1/ms
Open Window

t2/ms
 Trigger Period from
Microcontroller twd/ms

Reset Time
tnres/ms

34 13.3 105 14.0 14.7 19.9 4
51 19.61 154.8 20.64 21.67 29.32 4
91 33.54 264.80 35.32 37.06 50.14 4

120 42.84 338.22 45.11 47.34 64.05 4
24Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

10. Electrical Characteristics LIN SBC
5V < VS < 27V, –40°C < Tj < 150°C, unless otherwise specified. All values refer to GND pins

No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*
1 VS Pin

1.1 Nominal DC voltage range VS VS 5 27 V A

1.2 Supply current in Sleep
Mode

Sleep Mode
VLIN > VS – 0.5V
VS < 14V

VS IVSsleep 3 10 14 µA A

Sleep Mode, VLIN = 0V
Bus shorted to GND
VS < 14V

VS IVSsleep_short 6 17 30 µA A

1.3 Supply current in Silent
Mode

Bus recessive
VS < 14V (Tj = 25°C)
Without load at VREG

VS IVSsi 20 35 45 µA A

Bus recessive
VS < 14V (Tj = 125°C)
Without load at VREG

VS IVSsi 25 40 50 µA A

Silent Mode
VS < 14V
Bus shorted to GND
Without load at VREG

VS IVSsi_short 25 50 80 µA A

1.4 Supply current in Normal
Mode

Bus recessive
VS < 14V
Without load at VREG

VS IVSrec 0.3 0.8 mA A

1.5 Supply current in Normal
Mode

Bus recessive
VS < 14V
VREG load current 50mA

VS IVSdom 50 53 mA A

1.6 Supply current in Fail-safe
Mode

Bus recessive, RXD is low
VS < 14V
Without load at VREG

VS IVSfail 0.8 1.5 mA A

1.7 VS undervoltage threshold
Switch to Unpowered Mode VS VSthU 4.1 4.4 4.7 V A
Switch to Fail-safe Mode VS VSthF 4.4 4.7 4.9 V A

1.8 VS undervoltage threshold
hysteresis VS VSth_hys 0.3 V A

2 RXD Output Pin

2.1 Low-level output sink
current

Normal Mode
VLIN = 0V
VRXD = 0.4V

RXD IRXD 1.3 2.5 8 mA A

2.2 Low-level output voltage IRXD = 1mA RXD VRXDL 0.4 V A
2.3 Internal resistor to PVREG RXD RRXD 3 5 7 kΩ A

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
25Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

3 TXD Input/Output Pin
3.1 Low-level voltage input TXD VTXDL –0.3 +0.8 V A

3.2 High-level voltage input TXD VTXDH 2 VREG +
0.3V V A

3.3 Pull-up resistor VTXD = 0V TXD RTXD 125 250 400 kΩ A
3.4 High-level leakage current VTXD = VREG TXD ITXD –3 +3 µA A

3.5 Low-level output sink
current

Fail-safe Mode, wake up
VLIN = VS
VWAKE = 0V
VTXD = 0.4V

TXD ITXDwake 2 2.5 8 mA A

4 EN Input Pin
4.1 Low-level voltage input EN VENL –0.3 +0.8 V A

4.2 High-level voltage input EN VENH 2 VREG +
0.3V V A

4.3 Pull-down resistor VEN = VREG EN REN 50 125 200 kΩ A
4.4 Low-level input current VEN = 0V EN IEN –3 +3 µA A
5 NTRIG Watchdog Input Pin

5.1 Low-level voltage input NTRIG VNTRIGL –0.3 +0.8 V A

5.2 High-level voltage input NTRIG VNTRIGH 2 VREG +
0.3V V A

5.3 Pull-up resistor VNTRIG = 0V NTRIG RNTRIG 125 250 400 kΩ A
5.4 High-level leakage current VNTRIG = VREG NTRIG INTRIG –3 +3 µA A
6 Mode Input Pin

6.1 Low-level voltage input MODE VMODEL –0.3 +0.8 V A

6.2 High-level voltage input MODE VMODEH 2 VREG +
0.3V V A

6.3 High-level leakage current VMODE = VREG or
VMODE = 0V MODE IMODE –3 +3 µA A

7 LIN Bus Driver

7.1 Driver recessive output
voltage Load1/Load2 LIN VBUSrec 0.9 × VS VS V A

7.2 Driver dominant voltage VVS = 7V
Rload = 500Ω LIN V_LoSUP 1.2 V A

7.3 Driver dominant voltage VVS = 18V
Rload = 500Ω LIN V_HiSUP 2 V A

7.4 Driver dominant voltage VVS = 7.0V
Rload = 1000Ω LIN V_LoSUP_1k 0.6 V A

7.5 Driver dominant voltage VVS = 18V
Rload = 1000Ω LIN V_HiSUP_1k 0.8 V A

7.6 Pull-up resistor to VS The serial diode is
mandatory LIN RLIN 20 30 47 kΩ A

7.7 Voltage drop at the serial
diodes

In pull-up path with Rslave
ISerDiode = 10mA LIN VSerDiode 0.4 1.0 V D

10. Electrical Characteristics LIN SBC (Continued)
5V < VS < 27V, –40°C < Tj < 150°C, unless otherwise specified. All values refer to GND pins

No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
26Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

7.8 LIN current limitation
VBUS = VBat_max

LIN IBUS_LIM 70 120 200 mA A

7.9
Input leakage current at
the receiver including pull-
up resistor as specified

Input leakage current
Driver off
VBUS = 0V
VBat = 12V

LIN IBUS_PAS_dom –1 –0.35 mA A

7.10 Leakage current LIN
recessive

Driver off
8V < VBat < 18V
8V < VBUS < 18V
VBUS ≥ VBat

LIN IBUS_PAS_rec 10 20 µA A

7.11

Leakage current at GND
loss, control unit
disconnected from ground.
Loss of local ground must
not affect communication
in the residual network.

GNDDevice = VS
VBat = 12V
0V < VBUS < 18V

LIN IBUS_NO_gnd –10 +0.5 +10 µA A

7.12

Leakage current at loss of
battery. Node has to
sustain the current that can
flow under this condition.
Bus must remain
operational under this
condition.

VBat disconnected
VSUP_Device = GND
0V < VBUS < 18V

LIN IBUS_NO_bat 0.1 2 µA A

7.13 Capacitance on pin LIN to
GND LIN CLIN 20 pF D

8 LIN Bus Receiver

8.1 Center of receiver
threshold

VBUS_CNT =
(Vth_dom + Vth_rec)/2

LIN VBUS_CNT
0.475 ×

VS

0.5 ×
VS

0.525 ×
VS

V A

8.2 Receiver dominant state VEN = VREG LIN VBUSdom 0.4 × VS V A
8.3 Receiver recessive state VEN = VREG LIN VBUSrec 0.6 × VS V A

8.4 Receiver input hysteresis Vhys = Vth_rec – Vth_dom LIN VBUShys
0.028 ×

VS
0.1 × VS

0.175 ×
VS

V A

8.5 Pre_Wake detection LIN
High-level input voltage LIN VLINH VS – 2V VS + 0.3V V A

8.6 Pre_Wake detection LIN
Low-level input voltage Activates the LIN receiver LIN VLINL –27 VS – 3.3V V A

9 Internal Timers

9.1 Dominant time for wake-up
via LIN-bus VLIN = 0V LIN tbus 30 90 150 µs A

9.2
Time delay for mode
change from Fail-safe into
Normal Mode via EN pin

VEN = VREG EN tnorm 5 15 20 µs A

9.3
Time delay for mode
change from Normal Mode
to Sleep Mode via EN pin

VEN = 0V EN tsleep 5 15 20 µs A

9.4 TXD dominant time-out
timer VTXD = 0V TXD tdom 27 55 70 ms A

10. Electrical Characteristics LIN SBC (Continued)
5V < VS < 27V, –40°C < Tj < 150°C, unless otherwise specified. All values refer to GND pins

No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
27Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

9.5
Time delay for mode
change from Silent Mode
into Normal Mode via EN

VEN = VREG EN ts_n 5 15 40 µs A

9.6 Monitoring time for wake-
up over LIN-bus LIN tmon 6 10 15 ms A

LIN Bus Driver AC Parameter with Different Bus Loads
Load 1 (small): 1nF, 1kΩ ; Load 2 (large): 10nF, 500Ω ; RRXD = 5kΩ; CRXD = 20pF;
Load 3 (medium): 6.8nF, 660Ω characterized on samples; 10.7 and 10.8 specifies the timing parameters for proper operation of
20Kbit/s, 10.9 and 10.10 at 10.4Kbit/s

9.7 Duty cycle 1

THRec(max) = 0.744 × VS
THDom(max) = 0.581 × VS
VS = 7.0V to 18V
tBit = 50µs
D1 = tbus_rec(min)/(2 × tBit)

LIN D1 0.396 A

9.8 Duty cycle 2

THRec(min) = 0.422 × VS
THDom(min) = 0.284 × VS
VS = 7.6V to 18V
tBit = 50µs
D2 = tbus_rec(max)/(2 × tBit)

LIN D2 0.581 A

9.9 Duty cycle 3

THRec(max) = 0.778 × VS
THDom(max) = 0.616 × VS
VS = 7.0V to 18V
tBit = 96µs
D3 = tbus_rec(min)/(2 × tBit)

LIN D3 0.417 A

9.10 Duty cycle 4

THRec(min) = 0.389 × VS
THDom(min) = 0.251 × VS
VS = 7.6V to 18V
tBit = 96µs
D4 = tbus_rec(max)/(2 × tBit)

LIN D4 0.590 A

9.11 Slope time falling and
rising edge at LIN VS = 7.0V to 18V LIN tSLOPE_fall

tSLOPE_rise
3.5 22.5 µs A

10 Receiver Electrical AC Parameters of the LIN Physical Layer
LIN Receiver, RXD Load Conditions (CRXD): 20pF

10.1
Propagation delay of
receiver (Figure 10-1 on
page 31)

VS = 7.0V to 18V
trx_pd = max(trx_pdr , trx_pdf)

RXD trx_pd 6 µs A

10.2
Symmetry of receiver
propagation delay rising
edge minus falling edge

VS = 7.0V to 18V
trx_sym = trx_pdr – trx_pdf

RXD trx_sym –2 +2 µs A

11 NRES Open Drain Output Pin

11.1 Low-level output voltage VS ≥ 5.5V
INRES = 1mA NRES VNRESL 0.14 V A

11.2 Low-level output low 10kΩ to 5V
VREG = 0V NRES VNRESLL 0.14 V A

11.3 Undervoltage reset time VS ≥ 5.5V
CNRES = 20pF NRES treset 2 4 6 ms A

11.4 Reset debounce time for
falling edge

VS ≥ 5.5V
CNRES = 20pF NRES tres_f 1.5 10 µs A

10. Electrical Characteristics LIN SBC (Continued)
5V < VS < 27V, –40°C < Tj < 150°C, unless otherwise specified. All values refer to GND pins

No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
28Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

11.5 Switch off leakage current VNRES = 5.5V NRES –3 +3 µA A
12 Watchdog Oscillator

12.1 Voltage at WD_OSC in
Normal or Fail-safe Mode

IWD_OSC = –200µA
VVS ≥ 4V WD_OSC VWD_OSC 1.13 1.23 1.33 V A

12.2 Possible values of resistor Resistor ±1% WD_OSC ROSC 34 120 kΩ A
12.3 Oscillator period ROSC = 34kΩ tOSC 10.65 13.3 15.97 µs A
12.4 Oscillator period ROSC = 51kΩ tOSC 15.68 19.6 23.52 µs A
12.5 Oscillator period ROSC = 91kΩ tOSC 26.83 33.5 40.24 µs A
12.6 Oscillator period ROSC = 120kΩ tOSC 34.2 42.8 51.4 µs A
13 Watchdog Timing Relative to tOSC

13.1 Watchdog lead time after
Reset td 7895 cycles A

13.2 Watchdog closed window t1 1053 cycles A
13.3 Watchdog open window t2 1105 cycles A

13.4 Watchdog reset time
NRES NRES tnres 3.2 4 4.8 ms A

14 VREG Voltage Regulator in Normal/Fail-safe and Silent Mode, VREG and PVREG Short-circuited

14.1 Output voltage VREG 4V < VS < 18V
(0mA to 50mA) VREG VREGnor 3.234 3.366 V A

14.2 Output voltage VREG at
low VS 3V < VS < 4V VREG VREGlow VS – VD 3.366 V A

14.3 Regulator drop voltage VS > 3V, IVREG = –15mA VS, VREG VD 200 mV A
14.4 Regulator drop voltage VS > 3V, IVREG = –50mA VS, VREG VD 500 700 mV A
14.5 Line regulation 4V < VS < 18V VREG VREGline 0.1 0.2 % A
14.6 Load regulation 5mA < IVREG < 50mA VREG VREGload 0.1 0.5 % A

14.7 Power supply ripple
rejection

10Hz to 100kHz
CVREG = 10µF
VS = 14V, IVREG = –15mA

VREG 50 dB D

14.8 Output current limitation VS > 4V VREG IVREGlim –240 –160 –85 mA A
14.9 Load capacity 0.2Ω < ESR < 5Ω at 100kHz VREG Cload 1.8 10 µF D

14.10 VREG undervoltage
threshold

Referred to VREG
VS > 4V VREG VthunN 2.8 3.2 V A

14.11 Hysteresis of undervoltage
threshold

Referred to VREG
VS > 4V VREG Vhysthun 150 mV A

14.12 Ramp-up time VS > 4V to
VREG = 3.3V

CVREG = 2.2µF
Iload = –5mA at VREG VREG TVREG 320 500 µs A

15 DIV_ON Input Pin
15.1 Low-level voltage input DIV_ON VDIV_ON –0.3 +0.8 V A

15.2 High-level voltage input DIV_ON VDIV_ON 2 VREG +
0.3 V A

15.3 Pull-down resistor VDIV_ON = VREG DIV_ON RDIV_ON 125 250 400 kΩ A
15.4 Low-level input current VDIV_ON = 0V DIV_ON IDIV_ON –3 +3 µA A

10. Electrical Characteristics LIN SBC (Continued)
5V < VS < 27V, –40°C < Tj < 150°C, unless otherwise specified. All values refer to GND pins

No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
29Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

16 SP_MODE Input Pin
16.1 Low-level voltage input SP_MODE VSP_MODE –0.3 +0.8 V A

16.2 High-level voltage input SP_MODE VSP_MODE 2 VREG +
0.3 V A

16.3 Pull-down resistor VSP_MODE = VREG SP_MODE RSP_MODE 50 125 200 kΩ A
16.4 Low-level input current VSP_MODE = 0V SP_MODE ISP_MODE –3 +3 µA A
17 LIN Driver in High-speed Mode (VSP_Mode = VREG)

17.1 Transmission Baud rate VS = 7V to 18V
RLIN = 500Ω , CLIN = 600pF LIN SP 115 kBaud C

17.2 Slope time LIN falling edge VS = 7V to 18V LIN tSL_fall 1 2 µs A

17.3 Slope time LIN rising edge,
depending on RC-load

VS = 14V
RLIN = 500Ω , CLIN = 600pF LIN tSL_rise 2 3 µs A

18 Voltage Divider
18.1 Divider ratio VBAT 5V to 40V PV1 1:24 D
18.2 Divider ratio error VS = 5V to 27V PV1 –2 +2 % A
18.3 Divider temperature drift PV1 2 ppm/°C C

18.4 VBAT range of divider
linearity VBAT 5 27 V C

18.5 VBat input current VBAT = 14V VBAT 100 220 µA A

18.6 Maximum output Voltage
at PV1 PV1 3 3.1 3.5 V A

18.7 Pin capacitance PV1 2 pF D

10. Electrical Characteristics LIN SBC (Continued)
5V < VS < 27V, –40°C < Tj < 150°C, unless otherwise specified. All values refer to GND pins

No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
30Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 10-1. Definition of Bus Timing Characteristics

TXD
(Input to transmitting node)

VS
(Transceiver supply
of transmitting node)

RXD
(Output of receiving node1)

RXD
(Output of receiving node2)

LIN Bus Signal

Thresholds of
receiving node1

Thresholds of
receiving node2

tBus_rec(max)

trx_pdr(1)

trx_pdf(2)trx_pdr(2)

trx_pdf(1)

tBus_dom(min)

tBus_dom(max)

THRec(max)

THDom(max)

THRec(min)

THDom(min)

tBus_rec(min)

tBit tBittBit
31Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Atmel AVR Microcontroller Unit (AVR MCU)

8-bit AVR Microcontroller with 32K/64K Bytes In-System
Programmable Flash

PRELIMINARY DATASHEET
Features

● High Performance, Low Power AVR® 8-bit Microcontroller
● Advanced RISC Architecture

● 124 Powerful Instructions - Most Single Clock Cycle Execution
● Additional Math Extension Instruction set
● 32 x 8 General Purpose Working Registers
● Fully Static Operation
● Up to 15MIPS Throughput at 15MHz

● High Endurance Non-volatile Memory Segments
● 32K/64Kbytes of In-System Self-Programmable Flash Program Memory
● 1Kbyte EEPROM
● 4Kbytes Internal SRAM
● Write/Erase Cycles:10,000 Flash/100,000 EEPROM
● Data Retention: 20 Years at 85°C/100 Years at 25°C(1)

● Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation

● Programming Lock for Software Security
● Peripheral Features

● Two Configurable 8 or 16-bit Timers with Separate Prescaler, Optional Input
Capture (IC), Compare Mode and CTC

● LIN UART Serial Communication Interface with Flexible Baud-rate Generator
● Master/Slave SPI Serial Interface
● 17-bit 8kS/s Single-ended Voltage-ADC with 7 Selectable Input Channels and

Diagnosis Modes
● 18-bit 8kS/s Differential Current-ADC with Programmable Gain, Comparator Mode

and Diagnosis Modes
● Wake-up Timer
● Programmable Watchdog Timer with Separate On-chip Oscillator

● Special Microcontroller Features
● debugWIRE On-chip Debug System
● In-System Programmable via SPI Ports
● Power-on Reset
● External and Internal Interrupt Sources
● Sleep Modes:

● Idle, Power-save and Power-down
 8096C–AVR–01/13

11. Overview
The Atmel® AVR MCU is a monitoring circuit, e.g., for sensor or car battery applications with focus on high accuracy and low
cost. The device contains two high accuracy ADCs and a precision analog voltage and temperature reference, e.g.,
measurement of battery cell voltage, current and temperature. The device also contains accurate RC oscillators and a PLL,
minimizing the external component count. The device contains a dedicated LIN/UART macro module, for data input/output
using the LIN protocol. This interface also supports higher data rates than specified in the LIN specification.The device
implements low power modes of operation, allowing continuous current monitoring with low current consumption. The feature
set makes the Atmel AVR MCU highly suitable in, e.g., car battery monitoring systems focusing on high performance and low
cost.

Figure 11-1. Block Diagram

The MCU provides the following features: 32K/64K bytes of In-System Programmable Flash with Read-While-Write capabilities,
1K bytes EEPROM, 4Kbytes SRAM, 32 general purpose working registers, 10 general purpose I/O lines, two flexible
Timer/Counters with Input Capture and compare modes, one programmable LIN/UART, two high accuracy Delta Sigma ADCs
for voltage, current and temperature measurements, a programmable Watchdog Timer with internal Oscillator, debugWIRE for
On-chip debugging, an SPI serial port also used for programming, internal and external interrupts and three software selectable
power saving modes. The two Delta Sigma ADCs allow simultaneous measurement of battery voltage and current with very
high accuracy, temperature measurements using the internal temperature reference, and continuous monitoring of the battery
current with very low current consumption using the Power-save sleep mode.

Oscillator
Circuits/

Clock
Generation

Power
Supervision

POR and
RESET

Watchdog
Oscillator

Oscillator
Sampling
Interface

Watchdog
Timer

Program
Logic

Voltage
Reference

Voltage
ADC

Flash

SPI LIN/UART

PORTB (8)

PB7 to 0

PA1 to 0

PORTA (2)

DATA BUS

AVR CPU

SRAM 8/16-bit T/C0

8/16-bit T/C1

VCTAT

AVCC_DIV

NV2

PI
NI

PV2

VREF

VREFGND

EEPROM

Wake-up
Timer

DebugWIRE

VCC

RESET/dW

GND Current
ADC
33Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly
connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster
than conventional CISC microcontrollers.
The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the
program memory to be reprogrammed In-System, through an SPI serial interface, by a conventional non-volatile memory
programmer or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the
application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the
Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-
System Self-Programmable Flash and highly accurate analog front-end in a monolithic chip, the Atmel® AVR MCU is a powerful
microcontroller that provides a highly flexible and cost effective solution.
The Atmel AVR MCU AVR is supported with a full suite of program and system development tools including: C Compilers,
Macro Assemblers, Program Debugger/Simulators, and On-chip Debugger.

12. About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of the device. These code
examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors
include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler
documentation for more details.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with
instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
34Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

13. AVR CPU Core

13.1 Overview
This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program
execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle
interrupts.

Figure 13-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses
for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is
being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This
allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register
File, the operation is executed, and the result is stored back in the Register File – in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing – enabling
efficient address calculations. One of these address pointers can also be used as an address pointer for look up tables in Flash
program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.
The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register
operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information
about the result of the operation.

Status and
Control

Interrupt
Unit

32 x 8
General
Purpose
Registers

ALU

Data Bus 8-bit

Data
SRAM

Watchdog
Timer

Instruction
Register

Instruction
Decoder

EEPROM

I/O Lines

I/O Module n

Control Lines

D
ire

ct
 A

dd
re

ss
in

g

In
di

re
ct

 A
dd

re
ss

in
g

I/O Module 2

Program
Counter

Flash
Program
Memory

I/O Module 1
35Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address
space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit
instruction.
During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively
allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different
addressing modes supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status
Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance
with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions.
The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. In
addition, the Atmel® AVR MCU has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

13.2 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single
clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed.
The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the
“Instruction Set” section for a detailed description.

13.3 Status Register
The Status Register contains information about the result of the most recently executed arithmetic instruction. This information
can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after
all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.
The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an
interrupt. This must be handled by software.

13.3.1 SREG – AVR Status Register

● Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then
performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are
enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has
occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the
application with the SEI and CLI instructions, as described in the instruction set reference.

● Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit.
A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit
in a register in the Register File by the BLD instruction.

● Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic. See
the “Instruction Set Description” for detailed information.

Bit 7 6 5 4 3 2 1 0
0x3F (0x5F) I T H S V N Z C SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
36Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the negative flag N and the Two’s Complement Overflow Flag V. See the
“Instruction Set Description” for detailed information.

● Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the “Instruction Set Description”
for detailed information.

● Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description”
for detailed information.

● Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

● Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

13.4 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and
flexibility, the following input/output schemes are supported by the Register File:
● One 8-bit output operand and one 8-bit result input
● Two 8-bit output operands and one 8-bit result input
● Two 8-bit output operands and one 16-bit result input
● One 16-bit output operand and one 16-bit result input

Figure 13-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 13-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle
instructions. As shown in Figure 13-2, each register is also assigned a data memory address, mapping them directly into the
first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory
organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any
register in the file.

7 0 Addr

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
37Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

13.4.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers
for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 13-
3 on page 38.

Figure 13-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and
automatic decrement (see the instruction set reference for details).

13.5 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts
and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the Stack is implemented as
growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the
Stack Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This Stack space
in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The
Stack Pointer must be set to point above 0x100. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto the Stack with subroutine call
or interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is
incremented by two when data is popped from the Stack with return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL
is needed. In this case, the SPH Register will not be present.

13.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8
0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
38Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

13.6 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock
clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used.
Figure 13-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-
access Register File concept. This is the basic pipelining concept to obtain up to 1MIPS per MHz with the corresponding unique
results for functions per cost, functions per clocks, and functions per power-unit.

Figure 13-4. The Parallel Instruction Fetches and Instruction Executions

Figure 13-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register
operands is executed, and the result is stored back to the destination register.

Figure 13-5. Single Cycle ALU Operation

13.7 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate
program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one
together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete
list of vectors is shown in “Interrupts” on page 70. The list also determines the priority levels of the different interrupts. The lower
the address the higher is the priority level. RESET has the highest priority.
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write
logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction – RETI – is executed.
There are basically two types of interrupts. The first type is triggered by an event that sets the interrupt flag. For these interrupts,
the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt flag will be set and
remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur
while the Global Interrupt Enable bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global
Interrupt Enable bit is set, and will then be executed by order of priority.

clkCPU

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

T1 T2 T3 T4

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

clkCPU

T1

Register Operands Fetch

Result Write Back

ALU Operation Execute

Total Execution Time

T2 T3 T4
39Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have
interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any
pending interrupt is served.
Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an
interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed
after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be
used to avoid interrupts during the timed EEPROM write sequence.

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending interrupts,
as shown in this example.

13.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock cycles the
program vector address for the actual interrupt handling routine is executed. During this four clock cycle period, the Program
Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles.
If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served. If
an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four clock cycles.
This increase comes in addition to the start-up time from the selected sleep mode.
A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program Counter (two
bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in SREG is set.

Assembly Code Example

in r16, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; start EEPROM write
sbi EECR, EEPE
out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1<<EEMPE); /* start EEPROM write */
EECR |= (1<<EEPE);
SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending
; interrupt(s)

C Code Example

_SEI(); /* set Global Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
40Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

14. AVR Memories

14.1 Overview
This section describes the different memories in the Atmel® AVR MCU. The AVR architecture has two main memory spaces,
the Data Memory and the Program Memory space. In addition, the Atmel AVR MCU features an EEPROM Memory for data
storage. All three memory spaces are linear and regular.

14.2 In-System Reprogrammable Flash Program Memory
The Atmel AVR MCU contains 32K/64K bytes On-chip In-System Reprogrammable Flash memory for program storage. Since
all AVR instructions are 16 or 32 bits wide, the Flash is organized as 16K x 16.
The Flash memory has an endurance of at least 10,000 write/erase cycles. The Atmel AVR MCU Program Counter (PC) is
14/15 bits wide, thus addressing the 16K/32K program memory locations. The operation of Boot Program section and
associated Boot Lock bits for software protection are described in detail in Section 29. “Boot Loader Support – Read-While-
Write Self-Programming” on page 167. Section 30. “Memory Programming” on page 180 contains a detailed description on
Flash programming.
Constant tables can be allocated within the entire program memory address space (see the LPM – Load Program Memory
instruction description).
Timing diagrams for instruction fetch and execution are presented in Section 13.6 “Instruction Execution Timing” on page 39.

Figure 14-1. Program Memory Map

14.3 SRAM Data Memory
Figure 14-2 on page 42 shows how the Atmel® AVR MCU SRAM Memory is organized.
The Atmel AVR MCU is a complex microcontroller with more peripheral units than can be supported within the 64 locations
reserved in the Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.
The 4352 data memory locations address both the Register File, the I/O memory, Extended I/O memory, and the internal data
SRAM. The first 32 locations address the Register File, the next 64 location the standard I/O memory, then 160 locations of
Extended I/O memory, and the next 4K locations address the internal data SRAM.
The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indirect with Pre-
decrement, and Indirect with Post-increment. In the Register File, registers R26 to R31 feature the indirect addressing pointer
registers.
The direct addressing reaches the entire data space.
The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-register.

0x000

0x3FFF/0x7FFF
Boot Flash Section

Program Memory

Application Flash Section
41Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address registers X, Y,
and Z are decremented or incremented.
The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and the 4K bytes of internal data
SRAM in the Atmel AVR MCU are all accessible through all these addressing modes. The Register File is described in Section
13.4 “General Purpose Register File” on page 37.
SRAM data will be unaffected by all other resets than Power-On reset. Note however that if a reset occurs while writing data
types larger than 8-bit to the SRAM, the write might only be partially completed. This can leave, e.g., one byte updated in SRAM
while the rest of the data word (int, long etc) was not written since the reset canceled the ongoing write operation.

Figure 14-2. Data Memory Map

14.3.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The internal data SRAM access is
performed in two clkCPU cycles as described in Figure 14-3.

Figure 14-3. On-chip Data SRAM Access Cycles

Data Memory

32 Registers 0x000 - 0x001F
64 I/O Registers 0x0020 - 0x005F

160 Ext. I/O Regisrers 0x0060 - 0x00FF
Internal SRAM

(4K x 8)
0x0100

0x10FF

clkCPU

T1

Data

Data

RD

WR

Address validCompute Address

Next Instruction

Write

Read

Memory Access Instruction

Address

T2 T3
42Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

14.4 EEPROM Data Memory
The Atmel® AVR MCU contains 1Kbytes of data EEPROM memory. It is organized as a separate data space, in which single
bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the
EEPROM and the CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM Data Register,
and the EEPROM Control Register.
For a detailed description of EEPROM programming, see page 183 and page 186 respectively.

14.4.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.
The write access time for the EEPROM is given in Table 14-1 on page 45. A self-timing function, however, lets the user software
detect when the next byte can be written. If the user code contains instructions that write the EEPROM, some precautions must
be taken.
In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the description of the
EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When the EEPROM
is written, the CPU is halted for two clock cycles before the next instruction is executed.

14.5 I/O Memory
The I/O space definition of the Atmel® AVR MCU is shown in Section 32. “Register Summary” on page 203.
All Atmel AVR MCU I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the LD/LDS/LDD
and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the I/O space. I/O
Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers,
the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set section for more
details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel AVR MCU is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will only operate on
the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work with
registers 0x00 to 0x1F only.
The I/O and peripherals control registers are explained in later sections.

14.5.1 General Purpose I/O Registers

The Atmel AVR MCU contains three General Purpose I/O Registers. These registers can be used for storing any information,
and they are particularly useful for storing global variables and Status Flags. General Purpose I/O Registers within the address
range 0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions. See Section 14.6.4 “GPIOR2 –
General Purpose I/O Register 2” on page 47, Section 14.6.5 “GPIOR1 – General Purpose I/O Register 1” on page 47, and
Section 14.6.6 “GPIOR0 – General Purpose I/O Register 0” on page 47 for details.
43Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

14.6 Register Description

14.6.1 EEARH and EEARL– The EEPROM Address Register High and Low

● Bits 15:10 – Reserved
These bits are reserved bits in the Atmel AVR MCU and will always read as zero.

● Bits 9:0 – EEAR9:0: EEPROM Address
The EEPROM Address Registers – EEAR specify the EEPROM address in the 1Kbytes EEPROM space. The EEPROM
data bytes are addressed linearly between 0 and 1023. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

14.6.2 EEDR – The EEPROM Data Register

● Bits 7:0 – EEDR7:0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the EEPROM in the address
given by the EEAR Register. For the EEPROM read operation, the EEDR contains the data read out from the EEPROM
at the address given by EEAR.

14.6.3 EECR – The EEPROM Control Register

● Bits 7:6 – Reserved
These bits are reserved bits in the Atmel® AVR MCU and will always read as zero.

● Bits 5, 4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits
The EEPROM Programming mode bit setting defines which programming action that will be triggered when writing
EEPE. It is possible to program data in one atomic operation (erase the old value and program the new value) or to split
the Erase and Write operations in two different operations. The Programming times for the different modes are shown in
Table 14-1. While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00
unless the EEPROM is busy programming.

Bit 15 14 13 12 11 10 9 8
0x22 (0x42) EEAR9 EEAR8 EEARH
0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL
Bit 7 6 5 4 3 2 1 0
Read/Write R R R R R R R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 X X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0
0x20 (0x40) MSB LSB EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x1F (0x3F) – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 X X 0 0 X 0
44Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing EERIE to zero disables
the interrupt. The EEPROM Ready interrupt generates a constant interrupt when EEPE is cleared.

● Bit 2 – EEMPE: EEPROM Master Write Enable
The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written. When EEMPE is set, set-
ting EEPE within four clock cycles will write data to the EEPROM at the selected address If EEMPE is zero, setting EEPE
will have no effect. When EEMPE has been written to one by software, hardware clears the bit to zero after four clock
cycles. See the description of the EEPE bit for an EEPROM write procedure.

● Bit 1 – EEPE: EEPROM Write Enable
The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address and data are correctly set
up, the EEPE bit must be written to one to write the value into the EEPROM. The EEMPE bit must be written to one
before a logical one is written to EEPE, otherwise no EEPROM write takes place. The following procedure should be fol-
lowed when writing the EEPROM (the order of steps 2 and 3 is not essential):

1. Wait until EEPE becomes zero.
2. Write new EEPROM address to EEAR (optional).
3. Write new EEPROM data to EEDR (optional).
4. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.
5. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the EEPROM Master Write Enable will
time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the EEAR or
EEDR Register will be modified, causing the interrupted EEPROM access to fail. It is recommended to have the
Global Interrupt Flag cleared during all the steps to avoid these problems.
When the write access time has elapsed, the EEPE bit is cleared by hardware. The user software can poll this bit
and wait for a zero before writing the next byte. When EEPE has been set, the CPU is halted for two cycles before
the next instruction is executed.

Caution: A BOD reset during EEPROM write will invalidate the result of the ongoing operation.

● Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct address is set up in the
EEAR Register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM read access
takes one instruction, and the requested data is available immediately. When the EEPROM is read, the CPU is halted for
four cycles before the next instruction is executed.
The user should poll the EEPE bit before starting the read operation. If a write operation is in progress, it is neither possi-
ble to read the EEPROM, nor to change the EEAR Register.
The PLL is used to time the EEPROM accesses and the programming time will therefore depend on the PLL frequency.
Table 14-2 lists the typical programming time for EEPROM access from the CPU.

Table 14-1. EEPROM Mode Bits
EEPM1 EEPM0 Typ. Programming Time(1) Operation

0 0 9ms Erase and Write in one operation
(Atomic Operation)

0 1 4.5ms Erase Only
1 0 4.5ms Write Only
1 1 – Reserved for future use

Note: 1. Actual timing depends on frequency of the PLL.
45Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The following code examples show one assembly and one C function for writing to the EEPROM. The examples assume that
interrupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during execution of these
functions. The examples also assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Table 14-2. EEPROM Programming Time

Symbol Number of PLL Cycles
Typ Programming Time,

fPLL = 14.3 MHz
EEPROM write (from CPU) 27200 3.4ms

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_write
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Write data (r16) to data register
out EEDR,r16
; Write logical one to EEMPE
sbi EECR,EEMPE
; Start eeprom write by setting EEPE
sbi EECR,EEPE
ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))

;
/* Set up address and data registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMPE */
EECR |= (1<<EEMPE);
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE);

}

46Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that interrupts are
controlled so that no interrupts will occur during execution of these functions.

14.6.4 GPIOR2 – General Purpose I/O Register 2

14.6.5 GPIOR1 – General Purpose I/O Register 1

14.6.6 GPIOR0 – General Purpose I/O Register 0

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_read
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR,EERE
; Read data from data register
in r16,EEDR
ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))

;
/* Set up address register */
EEAR = uiAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;

}

Bit 7 6 5 4 3 2 1 0
0x2B (0x4B) MSB LSB GPIOR2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x2A (0x4A) MSB LSB GPIOR1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x1E (0x3E) MSB LSB GPIOR0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
47Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

15. System Clock and Clock Options

15.1 Clock Systems and their Distribution
Figure 15-1 presents the principal clock systems in the AVR and their distribution. All of the clocks need not be active at a given
time. In order to reduce power consumption, the clocks to modules not being used can be halted by using different sleep
modes, as described in Section 16. “Power Management and Sleep Modes” on page 53. The clock systems are detailed below.

Figure 15-1. Clock Distribution

15.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such modules are the
General Purpose Register File, the Status Register and the data memory holding the Stack Pointer. Halting the CPU clock
inhibits the core from performing general operations and calculations.

15.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules. The I/O clock is also used by the External Interrupt module, but note
that some external interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O clock is
halted.

15.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously with the CPU clock.

15.1.4 ADC Clock – clkADC

The Voltage ADC and Current ADC are provided with a dedicated clock domain. The ADCs have two alternate clock sources,
selectable by the CKSEL bit in ADCRA, refer to Section 26.6.3 “ADCRA - ADC Control Register A” on page 151 for details.

Voltage and Current
ADC

CPU
CORE

RAM

1/4

clkCPU clkFLASH

clkWUTclkADC

clkWDT

clkI/O

PLL

Wake-up
Timer

ADC Clock
Prescaler

Clock
Multiplexer

Slow RC
Oscillator

Ultra Low Power
RC Oscillator

System Clock
Prescaler

Reset LogicWatchdog Timer

FLASH and
EEPROM

AVR
Clock Control

Other I/O
Modules
48Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

15.1.5 Watchdog Timer and Wake-up Timer Clock – clkWDT/clkWUT

The Watchdog Timer and Wake-up Timer are provided with dedicated clock domains. This allows operation in all modes. It also
allows very low power operation by utilizing an Ultra Low Power RC Oscillator dedicated to this purpose.

15.2 Clock Sources
The following section describes the clock sources available in the device. The clocks are input to the AVR clock generator, and
routed to the appropriate modules.
The Atmel® AVR MCU has 3 on-chip clock sources used to clock the internal logic. Table 15-1 shows the clock sources and
their usage.

15.2.1 PLL

The PLL input clock is the Slow RC oscillator. The PLL has a fixed multiplication factor of 112, giving an output clock of 14.3
MHz (typical value). When enabled, the PLL will require a settling time before it has locked to the target frequency. During this
time, the PLL output frequency will be unstable and inaccurate. Refer to Section 31. “Electrical Characteristics AVR MCU” on
page 192ff for details on PLL and Slow RC frequency accuracy.
To allow the CPU to start up almost immediately when the PLL is enabled, the PLL clock will be divided by two to generate the
CPU and I/O clock when the PLL is not in lock. When the PLL enters lock, the CPU and I/O clock will switch to the full PLL
frequency. Operations that require high accuracy of the PLL clock should not be started until the PLL frequency has reached
sufficient accuracy. The PLLCSR[LOCK] bit indicates if the PLL is in lock and could be used as a trigger for high accuracy
operations. However, note that even if the PLL is locked, some additional time may be needed after start-up before the clock
frequency has stabilized within the required tolerances. This depends on the application requirements.
The LOCK bit in the PLL Control and Status Register (PLLCSR) indicates the lock state of the PLL. A PLL Lock Change
Interrupt can be enabled by the PLLCIE bit.
When the CPU wakes up from Power-save or Power-down, the CPU clock source is used to time the start-up, ensuring a valid
clock before instruction execution starts. The CPU starts execution before the PLL clock is locked. When waking up from a
sleep mode where the PLL is disabled, there is an additional delay of 2 Slow RC clock cycles (CKRC) before the PLL starts up.
When the CPU starts from reset, there is an additional delay allowing the supply voltage to reach a stable level before
commencing normal operation. The Ultra Low Power RC Oscillator is used for timing this real-time part of the start-up time.
Start-up times are determined by the SUT Fuses as shown in Table 15-2.

Table 15-1. Clock Sources
Clock Source Usage

PLL The clock source for the CPU, I/O and Flash. This clock divided by 28 is the default
clock source for the ADCs.

Slow RC Oscillator The clock source for the PLL, and optional clock source for the ADCs
Ultra Low Power RC Oscillator The clock source for the Watchdog Timer and the Wake-up Timer.

Table 15-2. Start-up times for the PLL

SUT[1:0]

Start-up times from
Power-down and

Power-save(1) Addidtional delay from Reset (Typical values)
00(3)

01 2 CKRC + 6 CK 14 CK + 16ms(2)

10 2 CKRC + 6 CK 14 CK + 32ms(2)

11(4) 2 CKRC + 6 CK 14 CK + 64ms(2)

Notes: 1. CKRC delay is only added if the PLL is disabled when the wake-up event occurs.
2. Actual value depends on the frequency of the ULP RC oscillator. The typical values of 16ms, 32ms and 64ms

correspond to 2K, 4K and 8K cycles of the ULP RC oscillator, repectively.
3. This setting is reserved for test purpose and should not be used in applications.
4. Default setting
49Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

15.2.2 Slow RC Oscillator

The Slow RC Oscillator provides a 128kHz clock (typical value). The oscillator is factory calibrated, and will operate with no
external components. During reset, hardware loads the calibration byte into the SOSCCAL Register and thereby automatically
calibrates the Slow RC Oscillator. Refer to Section 15.6.1 “SOSCCALA – Slow RC Oscillator Calibration Register A” on page 51
for details. The Slow RC Oscillator features and automatic temperature compensation, thus removing the need for run-time
calibration or frequency prediction. For details on Slow RC frequency drift and other characteristics, please refer to refer to
Section 31. “Electrical Characteristics AVR MCU” on page 192ff.
Run-time calibration of the Slow RC Clock is possible, but this is not recommended due to relatively coarse step size compared
to the temperature drift of the frequency.

15.2.3 Ultra Low Power RC Oscillator

The Ultra Low Power RC Oscillator (ULP Oscillator) provides a 128kHz clock (typical value, refer to Section 31. “Electrical
Characteristics AVR MCU” on page 192ff).

15.3 Clock Output
The CPU clock divided by 2 can be output to the CLKO pin. The CPU can enable the clock output function by setting the CKOE
bit in the MCU Control Register. The clock will not run in any sleep modes.

15.4 System Clock Prescaler
The Atmel® AVR MCU has a System Clock Prescaler, used to prescale the PLL clock. The system clock can be divided by
setting the Section 15.6.5 “CLKPR – Clock Prescale Register” on page 52, and this enables the user to decrease or increase
the system clock frequency as the requirement for power consumption and processing power changes. This system clock will
affect the clock frequency of the CPU and all synchronous peripherals. clkI/O, clkCPU and clkFLASH are divided by a factor as
shown in Table 15-3 on page 52.
When switching between prescaler settings, the System Clock Prescaler ensures that no glitches occurs in the clock system. It
also ensures that no intermediate frequency is higher than neither the clock frequency corresponding to the previous setting,
nor the clock frequency corresponding to the new setting.
The ripple counter that implements the prescaler runs at the frequency of the undivided clock, may be faster than the CPU's
clock frequency. It is not possible to determine the state of the prescaler, and the exact time it takes to switch from one clock
division to the other cannot be exactly predicted. From the time the CLKPS values are written, it takes between T1 + T2 and T1
+ 2*T2 before the new clock frequency is active. In this interval, two active clock edges are produced. Here, T1 is the previous
clock period, and T2 is the period corresponding to the new prescaler setting.
To avoid unintentional changes of clock frequency, a special write procedure must be followed to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is not interrupted.

15.5 ADC Clock Prescaler
The Atmel AVR MCU has an ADC Clock Prescaler which is used to prescale the PLL clock with a fixed division factor of 28
when this clock is selected as the ADC clock source.
50Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

15.6 Register Description

15.6.1 SOSCCALA – Slow RC Oscillator Calibration Register A

● Bits 7:0 – SCALA7:0: Slow RC Oscillator Calibration Value A
The Slow RC Oscillator Calibration Register A is used to trim the Slow RC Oscillator. The factory-calibrated value is auto-
matically written to this register during chip reset, and should not be changed by the SW. The Slow RC Oscillator
Calibration Register A is protected by a timed sequence.

15.6.2 SOSCCALB – Slow RC Oscillator Calibration Register B

● Bits 7:0 – SCALB7:0: Slow RC Oscillator Calibration Value B
The Slow RC Oscillator Calibration Register B is used to trim the Slow RC Oscillator. The factory-calibrated value is auto-
matically written to this register during chip reset, and should not be changed by the SW. The Slow RC Oscillator
Calibration Register B is protected by a timed sequence.

15.6.3 PLLCSR – PLL Control and Status Register

● Bits 7:6 – Reserved
These bits are reserved and will always read as zero.

● Bit 5 – SWEN: PLL Software Enable
This bit overrides the normal PLL enabling and disabling in Power Save and Power Down sleep modes. This bit is imple-
mented for test purpose and should never be set by the application. When this bit is cleared, the PLL operates as
described in Table 16-2 on page 54.

● Bit 4 – LOCK: PLL Lock
If this bit is logic high, the PLL is in lock and the PLL output is used as the system clock. Otherwise, the PLL output is
divided by a factor of two to generate the system clock.

● Bits 3:2 – Reserved
These bits are reserved and will always read as zero.

● Bit 1 – PLLCIF: PLL Lock Change Interrupt Flag
This flag is set if an edge on the lock signal is detected. The flag is cleared either by writing a logic one to the bit or by
executing the corresponding interrupt routine.

● Bit 0 – LOCK: PLL Lock Change Interrupt Enable
Interrupt enable for the Lock Change Interrupt Flag.

Bit 7 6 5 4 3 2 1 0
(0x66) SCALA7 SCALA6 SCALA5 SCALA4 SCALA3 SCALA2 SCALA1 SCALA0 SOSCCALA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0
(0x67) SCALB7 SCALB6 SCALB5 SCALB4 SCALB3 SCALB2 SCALB1 SCALB0 SOSCCALB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0
(0xD8) – – SWEN LOCK – – PLLCIF PLLCIE PLLCSR
Read/Write R R R/W R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0
51Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

15.6.4 MCUCR – MCU Control Register

● Bit 5 – CKOE: Clock Output
When this bit is written to one, the CPU clock divided by 2 is output on the CLKO pin.

15.6.5 CLKPR – Clock Prescale Register

Note: 1. See CLKPS[1:0] bit description.
● Bit 7 – CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only updated when
the other bits in CLKPR are simultaneously written to zero. CLKPCE is cleared by hardware four cycles after it is written
or when CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period does neither extend the time-out
period, or clear the CLKPCE bit.

● Bits 6:2 – Reserved
These bits are reserved and will always read as zero.

● Bit 1:0 – CLKPS[1:0]: Clock Prescaler Select
These bits define the division factor between the selected clock source and the internal system clock. These bits can be
written run-time to vary the clock frequency to suit the application requirements. As the divider divides the master clock
input to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used. The division factors
are given in Table 15-3.
The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, the CLKPS bits will be
reset to “00”. If CKDIV8 is programmed, CLKPS bits are reset to “11”, giving a division factor of 8 at start up. This feature
should be used if the selected clock source has a higher frequency than the maximum frequency of the device at the
present operating conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8 Fuse set-
ting. The Application software must ensure that a sufficient division factor is chosen if the selected clock source has a
higher frequency than the maximum frequency of the device at the present operating conditions. The device is shipped
with the CKDIV8 Fuse programmed.

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) – – CKOE PUD – – IVSEL IVCE MCUCR
Read/Write R R R/W R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
(0x61) CLKPCE – – – – – CLKPS1 CLKPS0 CLKPR
Read/Write R/W R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 X(1) X(1)

Table 15-3. System Clock Prescaler Select
CLKPS1 CLKPS0 Clock Division Factor

0 0 1
0 1 2
1 0 4
1 1 8
52Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

16. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR provides
various sleep modes allowing the user to tailor the power consumption to the application’s requirements.

16.1 Sleep Modes
Figure 15-1 on page 48 presents the different clock systems in the Atmel® AVR MCU, and their distribution. The figure is helpful
in selecting an appropriate sleep mode. The different sleep modes and their wake up sources is summarized in Table 16-1, and
Figure 16-1 on page 53 shows a sleep mode state diagram.

To enter any of the sleep modes, the SE bit in SMCR, see Section 16.7.1 “SMCR – Sleep Mode Control Register” on page 56,
must be written to logic one and a SLEEP instruction must be executed. The SM2..0 bits in the SMCR Register select which
sleep mode will be activated by the SLEEP instruction. See Table 16-3 on page 56 for a summary.
If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in
addition to the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The
contents of the register file and SRAM are unaltered when the device wakes up from any sleep mode except Power-off. If a
reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.

Figure 16-1. Sleep Mode State Diagram

Table 16-1. Wake-up Sources for Sleep Modes

Mode

Wake-up Sources

W
ak

e-
up

 o
n

R
eg

ul
ar

 C
ur

re
nt

W
U

T

W
D

T

SP
M

/E
EP

R
O

M
 R

ea
dy

C
-A

D
C

V-
A

D
C

O
th

er
 I/

O

Idle X X X X X X X
Power-save X X X X X
Power-down X X

RESET

Reset from all States

Active

Reset Time-out

Interrupt

Interrupt

Interrupt

Sleep

Sleep

Sleep

Power-save

Idle Power-down
53Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

16.2 Idle Mode
When the SM1..0 bits are written to 00, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU but allowing
all peripheral functions to continue operating. This sleep mode basically halts clkCPU and clkFLASH, while allowing the other
clocks to run. Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the Timer
Overflow interrupt.

16.3 Power-save Mode
When the SM1..0 bits are written to 11, the SLEEP instruction makes the MCU enter Power-save mode. In this mode, the
Voltage ADC, Current ADC, Wake-up Timer (WUT) and Watchdog Timer (WDT) continue operating if enabled.
This mode will be the default mode when application software does not require operation of CPU, Flash or any of the peripheral
units running at the PLL clock. If the ADCs are configured to operate on the 512kHz clock or if the PLLSCR[SWEN] bit is set,
the PLL will be operating. Refer to Section 26. “ADC - Analog to Digital Converter” on page 138 for details on the ADC clock
selection.
If the current through the sense resistor is so small that the Current ADC cannot measure it accurately, Regular Current
detection should be enabled to reduce power consumption. The WUT keeps accurately track of the time so that battery self
discharge can be calculated.
When waking up from Power-save mode, there is a delay from the wake-up condition occurs until the wake-up becomes
effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined in
Section 15.2 “Clock Sources” on page 49.

16.4 Power-down Mode
When the SM1..0 bits are written to 10, the SLEEP instruction makes the MCU enter Power-down mode. In this mode, the PLL
and Slow RC Oscillator (RCOSC_SLOW) are normally stopped, while the Wake-up Timer (WUT) and Watchdog Timer (WDT)
continue operating if enabled. If the PLLCSR[SWEN] bit is set, both SlowRC oscillator and PLL will keep running in this mode.
When waking up from Power-down mode, there is a delay from the wake-up condition occurs until the wake-up becomes
effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined in
Section 15.2 “Clock Sources” on page 49

Table 16-2. Active Modules in Different Sleep Modes

Module
Mode

Active Idle Power-save Power-down
PLL X X X(1)(2)

RCOSC_ULP X X X X
RCOSC_SLOW X X X
CPU X
Flash X
8/16-bit Timer X X
LIN UART X X
SPI X X
V-ADC X X X
C-ADC X X X
External Interrupts X X X X
WUT X X X X
WDT X X X X
Notes: 1. Depending on ADC clock source setting, refer to Section 26. “ADC - Analog to Digital Converter” on page 138

for details.
2. If PLLCSR[SWEN] bit is set, PLL and SlowRC oscillator will always run in Power-save mode.
54Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

16.5 Power Reduction Register
The Power Reduction Register (PRR), see Section 16.7.2 “PRR0 – Power Reduction Register 0” on page 57, provides a
method to stop the clock to individual peripherals to reduce power consumption. The current state of the peripheral is frozen
and the I/O registers can not be read or written. Resources used by the peripheral when stopping the clock will remain
occupied, hence the peripheral should in most cases be disabled before stopping the clock. Waking up a module, which is done
by clearing the bit in PRR, puts the module in the same state as before shutdown.
Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall power consumption. In all other
sleep modes, the clock is already stopped.

16.6 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR controlled system. In general,
sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as possible of the
device’s functions are operating. All functions not needed should be disabled. In particular, the following modules may need
special consideration when trying to achieve the lowest possible power consumption.

16.6.1 Wake-up Timer

If the Wake-up Timer is not needed in the application, the module should be turned off. If the Wake-up Timer is enabled, it will
be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes this will contribute significantly to
the total current consumption. Refer to Section 18. “Wake-up Timer” on page 68 for details on how to configure the Wake-up
Timer.

16.6.2 Watchdog Timer

If the Watchdog Timer is not needed in the application, the module should be turned off. If the Watchdog Timer is enabled, it will
be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute significantly
to the total current consumption. Refer to Section 17.3 “Watchdog Timer” on page 62 for details on how to configure the
Watchdog Timer.

16.6.3 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most important is then to ensure
that no pins drive resistive loads. In sleep modes where both the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the
input buffers of the device will be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be enabled. Refer to Section 21.2.5
“Digital Input Enable and Sleep Modes” on page 82 for details on which pins are enabled. If the input buffer is enabled and the
input signal is left floating or have an analog signal level close to VCC/2, the input buffer will use excessive power.
For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to VCC/2 on an input
pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to the Digital Input Disable
Register.

16.6.4 On-chip Debug System

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep modes. This will increase the
power consumption while in sleep. Thus, the DWEN Fuse should be disabled when debugWire is not used.

16.6.5 Voltage ADC

If enabled, the V-ADC will consume power independent of sleep mode. To save power, the V-ADC should be disabled by
clearing the ADCRE[VADEN] bit when not used. When disabling the VADC or making other VADC configuration changes, make
sure that the disable command has been synchronized to the ADC clock domain before entering sleep mode. ADC
synchronization is explained in Section 26.4.1 “Synchronization of Configuration Settings” on page 146. See Section 26. “ADC -
Analog to Digital Converter” on page 138 for details on V-ADC operation.
55Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

16.6.6 Current ADC

If enabled, the C-ADC will consume power independent of sleep mode. To save power, the C-ADC should be disabled by
clearing the ADCRC[CADEN] bit when not used, or set in Regular Current detection mode. See Section 26. “ADC - Analog to
Digital Converter” on page 138 for details on C-ADC operation. When disabling the CADC or making other CADC configuration
changes, make sure that the disable command has been synchronized to the ADC clock domain before entering sleep mode.
ADC synchronization is explained in Section 26.4.1 “Synchronization of Configuration Settings” on page 146.

16.6.7 PLL

 If the ADCs are configured to operate on the 512kHz clock, the PLL will be operating in Power-save mode. To minimize power
consumption in the Power-save mode, it is therefore recommended to configure the ADCs to operate on the 128kHz clock,
allowing the PLL to be disabled. Also note that the PLL will be enabled in all sleep modes if the PLLCSR[SWEN] bit is set. For
low power operation it is therefore recommended to clear this bit before entering sleep mode.. Refer to Section 26. “ADC -
Analog to Digital Converter” on page 138 for details.

16.6.8 Bandgap Voltage Reference

The Bandgap reference will consume power independent of sleep mode. To save power in the Power-down sleep mode, the
Bandgap reference can be configured in a special sample mode where the VREF voltage is refreshed occasionally. See Section
27. “Band Gap Reference and Temperature Sensor” on page 161 for details. It is not possible for software to completely disable
the bandgap during normal operation.

16.7 Register Description

16.7.1 SMCR – Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

● Bits 7:3 – Reserved
These bits are reserved bits in the Atmel® AVR MCU, and will always read as zero.

● Bits 2:1 – SM1:0: Sleep Mode Select Bits 1:0
These bits select between the available sleep modes as shown in Table 16-3.

● Bit 0 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is executed.
To avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended to write the Sleep
Enable (SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up.

Bit 7 6 5 4 3 2 1 0
0x33 (0x53) – – – – – SM1 SM0 SE SMCR
Read/Write R R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 16-3. Sleep Mode Select

SM1 SM0 Sleep Mode
0 0 Idle
0 1 Reserved
1 0 Power-down
1 1 Power-save
56Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

16.7.2 PRR0 – Power Reduction Register 0

● Bit 7:4 – Reserved
These bits are reserved for future use. For compatibility with future devices, these bits must be written to zero when
PRR0 is written.

● Bit 3 – PRLIN: Power Reduction LIN UART Interface
Writing logic one to this bit shuts down the LIN UART Interface by stopping the clock to the module. When waking up the
LIN UART again, the LIN UART should be reinitialized to ensure proper operation.

● Bit 4 – PRSPI: Power Reduction Serial Peripheral Interface
Writing logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to the module. When waking
up the SPI again, the SPI should be reinitialized to ensure proper operation.

● Bit 1 – PRTIM1: Power Reduction Timer/Counter1
Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1 is enabled, operation
will continue like before the shutdown.

● Bit 0 – PRTIM0: Power Reduction Timer/Counter0
Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0 is enabled, operation
will continue like before the shutdown.

Bit 7 6 5 4 3 2 1 0
(0x64) – – – – PRLIN PRSPI PRTIM1 PRTIM0 PRR0
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
57Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

17. System Control and Reset

17.1 Resetting the AVR
During reset, all I/O Registers are set to their initial values, and the program starts execution from the Reset Vector. The
instruction placed at the Reset Vector must be a JMP – Absolute Jump – instruction to the reset handling routine. If the program
never enables an interrupt source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. The circuit diagram in Figure 17-1 on page 59 shows the reset logic. Table 19-1 on page 70 defines the electrical
parameters of the reset circuitry.
The I/O ports of the AVR are immediately reset to their initial state when a reset source goes active. This does not require any
clock source to be running.
After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This allows the voltage
regulator to reach a stable level before normal operation starts. The time-out period of the delay counter is defined by the user
through the SUT Fuses. The different selections for the delay period are presented in Section 15.2 “Clock Sources” on page 49.

17.2 Reset Sources
The Atmel® AVR MCU has five sources of reset:
● The Power-on Reset module generates a Power-on Reset when the Voltage Regulator starts up.
● External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse

length.
● Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is enabled.
● Brown-out Reset. The MCU is reset when VREG is below the Brown-out Reset Threshold, VBOT. See Section 17.2.4

“Brown-out Detection” on page 61
● debugWIRE Reset. In On-chip Debug mode, the debugWIRE resets the MCU when giving the Reset command.
58Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 17-1. Reset Logic

Brown-out
Detection

MCU Status
Register (MCUSR)

Reset Circuit

debugWIRE

Pull-up Resistor

POR

S
Q

R

DATA BUS

CK

SUT[1:0]

COUNTER RESET

IN
T

E
R

N
A

L
R

E
S

E
T

TIMEOUT

SPIKE
FILTER

VCC

RESET
/dW

Delay Counters

Watchdog
Timer

Ultra Low Power
RC Oscillator

Clock
Generator

Power-on
Reset
Circuit

O
C

D
R

F

P
O

R
F

W
D

R
F

B
O

D
R

F

E
X

T
R

F

VCC
59Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

17.2.1 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level is defined in Section 31.
“Electrical Characteristics AVR MCU” on page 192ff. The POR is activated whenever VCC is below the detection level. The POR
circuit can be used to trigger the start-up Reset, as well as to detect a failure in supply voltage.
A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on Reset threshold
voltage invokes the delay counter, which determines how long the device is kept in RESET after VCC rise. The RESET signal is
activated again, without any delay, when VCC decreases below the detection level.

Figure 17-2. MCU Start-up, RESET Tied to VCC

Figure 17-3. MCU Start-up, RESET Extended Externally

17.2.2 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum pulse width will
generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the MCU after the Time-out
period – tTOUT – has expired.

Figure 17-4. External Reset During Operation

VPOT

VRST

VDD

RESET

INTERNAL
RESET

TIME-OUT

tTOUT

VDD

RESET

INTERNAL
RESET

TIME-OUT

VPOT

VRST

tTOUT

tTOUT

RESET

INTERNAL
RESET

TIME-OUT

VRST
60Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

17.2.3 Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge of this pulse, the
delay timer starts counting the Time-out period tTOUT. Refer to page 62 for details on operation of the Watchdog Timer.

Figure 17-5. Watchdog Reset During Operation

17.2.4 Brown-out Detection

The Atmel® AVR MCU has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC level during operation by
comparing it to a trigger level
VBOT = VBOTIDEAL× VREF/1.1. During start-up the VREF value will change, see Section 27. “Band Gap Reference and
Temperature Sensor” on page 161. The trigger level has a hysteresis to ensure spike free Brown-out Detection. The hysteresis
on the detection level should be interpreted as
VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT – VHYST/2.
The BOD is enabled by setting the BODEN fuse in low fuse byte, see Section 30.2 “Fuse Bits” on page 181. When the fuse is
programmed the BOD will be enabled in all modes of operation, except in Power-off mode. For applications that do not have an
external VCC monitor to generate a reset in case of low VCC, it is recommended to always enable the BOD in order to
guarantee safe operating conditions for the device.
When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT- in Figure 17-6), the Brown-out Reset is
immediately activated. When VCC increases above the trigger level (VBOT+ in Figure 17-6), the delay counter starts the MCU
after the Time-out period tTOUT has expired.

Figure 17-6. Brown-out Reset During Operation

1 CK Cycle

VFET

RESET

INTERNAL
RESET

RESET
Time-OUT

WDT
TIME-OUT

tTOUT

VBOT-

VBOT+

tTOUT

VCC

RESET

INTERNAL
RESET

TIME-OUT
61Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

17.3 Watchdog Timer

17.3.1 Features
● Clocked from separate on-chip oscillator
● 3 operating modes

● Interrupt
● System reset
● Interrupt and system reset

● Selectable time-out period from 16ms to 8s
● Optional locking of watchdog configuration after initial configuration
● Programmable hardware fuse watchdog always on (WDTON) for Fail-safe Mode

17.3.2 Overview

The Atmel® AVR MCU has an Enhanced Watchdog Timer (WDT). The WDT counts cycles of the Ultra Low Power RC
Oscillator. The WDT gives an interrupt or a system reset when the counter reaches a given time-out value. In normal operation
mode, it is required that the system uses the WDR - Watchdog Timer Reset - instruction to restart the counter before the time-
out value is reached. If the system doesn't restart the counter, an interrupt or system reset will be issued.

Figure 17-7. Watchdog Timer

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used to wake the device from sleep-
modes, and also as a general system timer. One example is to limit the maximum time allowed for certain operations, giving an
interrupt when the operation has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third mode, Interrupt and System Reset
mode, combines the other two modes by first giving an interrupt and then switch to System Reset mode. This mode will for
instance allow a safe shutdown by saving critical parameters before a system reset.
The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to System Reset mode. With the fuse
programmed the System Reset mode bit (WDE) and Interrupt mode bit (WDIE) are locked to 1 and 0 respectively.
As a safe-guard against software run-away, changes to the Watchdog configuration can only be performed with a timed
sequence. The sequence for setting or clearing WDE and/or changing time-out configuration is as follows:

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE) and WDE. A logic one must be
written to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as desired, but with the WDCE
bit cleared. This must be done in one operation.

The following code example shows one assembly and one C function for turning off the Watchdog Timer.

0.
51

s

0.
13

s

16
m

s

32
m

s

64
m

s

0.
26

s

1.
0s

2.
0s

4.
1s

8.
2s

Watchdog
Prescaler

WDP0

WDE

WATCHDOG
RESET

WDIF

WDIE

WDP1
WDP2
WDP3

MCU RESET

INTERRUPT

Ultra Low Power
RC Oscillator
62Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Notes: 1. See Section 12. “About Code Examples” on page 34
2. If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out condition, the device will

be reset and the Watchdog Timer will stay enabled. If the code is not set up to handle the Watchdog, this might
lead to an eternal loop of time-out resets. To avoid this situation, the application software should always clear the
Watchdog System Reset Flag (WDRF) and the WDE control bit in the initialization routine, even if the Watchdog is
not in use.

Assembly Code Example(1)

WDT_off:
; Turn off global interrupt
in r17, SREG ; store SREG value
cli ; disable interrupts during timed sequence
; Reset Watchdog Timer
wdr
; Clear WDRF in MCUSR
in r16, MCUSR
andi r16, (0xff & (0<<WDRF))
out MCUSR, r16
; Write logical one to WDCE and WDE
; Keep old prescaler setting to prevent unintentional time-out
in r16, WDTCSR
ori r16, (1<<WDCE) | (1<<WDE)
out WDTCSR, r16
; Turn off WDT
ldi r16, (0<<WDE)
out WDTCSR, r16
; Restore global interrupt enable setting
out SREG, r17 ; restore SREG value (I-bit)
ret

C Code Example(1)

void WDT_off(void)
{

char SREG;
cSREG = SREG; /* store SREG value */
__disable_interrupt();
__watchdog_reset();
/* Clear WDRF in MCUSR */
MCUSR &= ~(1<<WDRF);
/* Write logical one to WDCE and WDE */
/* Keep old prescaler setting to prevent unintentional time-out */
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Turn off WDT */
WDTCSR = 0x00;
SREG = cSREG; /* restore SREG value (I-bit) */

}

63Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The following code example shows one assembly and one C function for changing the time-out value of the Watchdog Timer.

As a further safe-guard against software run-away, software has the option to lock the Watchdog configuration from further
modification after the initial configuration. The Watchdog configuration will then be locked until the next system reset. To lock
the Watchdog configuration, the following algorithm must be followed:

1. In the same operation, write a logic one to WDCLE and WDCL.
2. Within the next four clock cycles, in the same operation, write a logic zero to WDCLE and a logic one to WDCL.

Assembly Code Example(1)

WDT_Prescaler_Change:
; Turn off global interrupt
in r17, SREG ; store SREG value
cli ; disable interrupts during timed sequence
; Reset Watchdog Timer
wdr
; Start timed sequence
in r16, WDTCSR
ori r16, (1<<WDCE) | (1<<WDE)
out WDTCSR, r16
; -- Got four cycles to set the new values from here -
; Set new prescaler(time-out) value = 64Kcycles (~0.5 s)
ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)
out WDTCSR, r16
; -- Finished setting new values, used 2 cycles -
; Restore global interrupt enable setting
out SREG, r17 ; restore SREG value (I-bit)
ret

C Code Example(1)

void WDT_Prescaler_Change(void)
{

char SREG;
cSREG = SREG; /* store SREG value */
__disable_interrupt();
__watchdog_reset();
/* Start timed sequence */
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Set new prescaler(time-out) value = 64Kcycles (~0.5 s) */
WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);
SREG = cSREG; /* restore SREG value (I-bit) */

}
Notes: 1. See Section 12. “About Code Examples” on page 34

2. The Watchdog Timer should be reset before any change of the WDP bits, since a change in the WDP bits can
result in a time-out when switching to a shorter time-out period.
64Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

17.4 Register Description

17.4.1 MCUSR – MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

● Bits 7:5 – Reserved
These bits are reserved bits in the Atmel® AVR MCU, and will always read as zero.

● Bit 4 – OCDRF: OCD Reset Flag
This bit is set if a debugWIRE Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

● Bit 3 – WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

● Bit 2 – BODRF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

● Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

● Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.
To make use of the Reset flags to identify a reset condition, the user should read the MCUSR as early as possible in the
program, and perform the required initialization accordingly. The MCUSR should be cleared once the initialization is
completed. If another reset occurs before MCUSR has been cleared, the value of MCUSR after the second reset will
show the sources of both the first and second reset.

17.4.2 WDTCSR – Watchdog Timer Control Register

● Bit 7 – WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is configured for interrupt. WDIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, WDIF is cleared by writ-
ing a logic one to the flag. When the I-bit in SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

● Bit 6 – WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is enabled. If WDE is
cleared in combination with this setting, the Watchdog Timer is in Interrupt Mode, and the corresponding interrupt is exe-
cuted if time-out in the Watchdog Timer occurs.
If WDE and WDIE are set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in the Watch-
dog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE and WDIF automatically by
hardware (the Watchdog goes to System Reset Mode). This is useful for keeping the Watchdog Timer security while
using the interrupt. To stay in Interrupt and System Reset Mode, WDIE must be set after each interrupt. This should how-
ever not be done within the interrupt service routine itself, as this might compromise the safety-function of the Watchdog
System Reset mode. If the interrupt is not executed before the next time-out, a System Reset will be applied.

Bit 7 6 5 4 3 2 1 0
0x34 (0x54) – – – OCDRF WDRF BODRF EXTRF PORF MCUSR
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 See Bit Description

Bit 7 6 5 4 3 2 1 0
(0x60) WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 X 0 0 0
65Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 5 – WDP3 : Watchdog Timer Prescaler 3
The WDP3..0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is enabled. The different presca-
ling values and their corresponding Timeout Periods are shown in Table 17-2.

● Bit 4 – WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit, and/or change the pres-
caler bits, WDCE must be set.
Once written to one, hardware will clear WDCE after four clock cycles.

● Bit 3 – WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is set. To clear WDE, WDRF
must be cleared first. This feature ensures multiple resets during conditions causing failure, and a safe start-up after the
failure.

● Bits 2:0 – WDP 2:0: Watchdog Timer Prescaler 2, 1, and 0
The WDP3..0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is enabled. The different presca-
ling values and their corresponding Timeout Periods are shown in Table 17-2 on page 66.

Table 17-1. Watchdog Timer Configuration

WDTON(1) WDE WDIE Mode Action on Time-out
1 0 0 Stopped None
1 0 1 Interrupt Mode Interrupt
1 1 0 System Reset Mode Reset
1 1 1 Interrupt and System Reset Mode Interrupt, then go to System Reset Mode
0 x x System Reset Mode Reset

Note: 1. WDTON Fuse set to “0” means programmed, “1” means unprogrammed.

Table 17-2. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0
Number of WDT

Oscillator Cycles
Typical

Time-out(1)

0 0 0 0 2Kcycles 16ms
0 0 0 1 4Kcycles 32ms
0 0 1 0 8Kcycles 64ms
0 0 1 1 16Kcycles 0.13s
0 1 0 0 32Kcycles 0.26s
0 1 0 1 64Kcycles 0.51s
0 1 1 0 128Kcycles 1.0s
0 1 1 1 256Kcycles 2.0s
1 0 0 0 512Kcycles 4.1s
1 0 0 1 1024Kcycles 8.2s
1 0 1 0

Reserved

1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Note: 1. The actual timeout value depends on the actual clock period of the Ultra Low Power RC Oscillator, refer to Sec-
tion 15.2.3 “Ultra Low Power RC Oscillator” on page 50 for details.
66Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

17.4.3 WDCLR - Watchdog Timer Configuration Lock Register

● Bits 7:3 – Reserved
These bits are reserved and will always read as zero.

● Bits 2:1 – WDCL[1:0]: Watchdog Timer Configuration Lock 1:0
The WDTCSR[6:0] register can be locked from any further software updates after initial configuration. Once locked,
these bits cannot be accessed until the next hardware reset. This provides a safe method for protecting the register from
unintentional modification by software runaway. It is recommended that software configures this register shortly after
reset, and then protects the register from further updates. There are two levels for register locking to support all opera-
tional modes of the Watchdog timer.
If using the watchdog timer in Interrupt mode where WDIE must be re-enabled after each timeout, only WDTCSR[5:0]
should be locked. When using the Watchdog in pure System reset mode, WDTCSR[6:0] should be locked to prevent the
watchdog from switching from System reset mode to Interrupt mode.
To lock WDTCSR[6:0], the following algorithm must be followed:

1. In the same operation, write a logic one to WDCLE and WDCL1:0.
2. Within the next four clock cycles, in the same operation, write a logic zero to WDCLE and a logic one to

WDCL1.
To lock WDTCSR[5:0], the following algorithm must be followed:

1. In the same operation, write a logic one to WDCLE and WDCL1:0.
2. Within the next four clock cycles, in the same operation, write a logic zero to WDCLE and WDCL1, and a logic

one to WDCL0.
● Bit 0 – WDCLE: Watchdog Timer Configuration Lock

See “Bits 2:1 – WDCL[1:0]: Watchdog Timer Configuration Lock 1:0” on page 67 for description.

Bit 7 6 5 4 3 2 1 0
– – – – – WDCL1 WDCL0 WDCLE WDCLR

Read/Write R R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
67Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

18. Wake-up Timer
The following section describes the Wake-up Timer in the Atmel® AVR MCU.
● One wake-up timer interrupt
● 8 selectable time-out periods
● Separate clock source

18.1 Overview
The Wake-up Timer is clocked from the Ultra Low Power RC Oscillator. By controlling the Wake-up Timer prescaler, the Wake-
up interval can be adjusted from 32 ms to 1 s.

Figure 18-1. Wake-up Timer

18.2 Register Description

18.2.1 WUTCSR – Wake-up Timer Control and Status Register

● Bit 7 – WUTIF: Wake-up Timer Interrupt Flag
The WUTIF bit is set (one) when an overflow occurs in the Wake-up Timer. WUTIF is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, WUTIF is cleared by writing a logic one to the flag. When
the SREG I-bit, WUTIE (Wake-up Timer Interrupt Enable), and WUTIF are set (one), the Wake-up Timer interrupt is
executed.

● Bit 6 – WUTIE: Wake-up Timer Interrupt Enable
When the WUTIE bit and the I-bit in the Status Register are set (one), the Wake-up Timer interrupt is enabled. The corre-
sponding interrupt is executed if a Wake-up Timer overflow occurs, i.e., when the WUTIF bit is set.

● Bit 5 – Reserved
This bit is reserved and will always read as zero.

● Bit 4 – WUTR: Wake-up Timer Reset
When WUTR bit is written to one, the Wake-up Timer is reset, and starts counting from zero. The WUTR bit is always
read as zero.

WUTR

WUTP1

WUTE

WUTIF

cl
k W

U
T
/1

K

clkWUT

cl
k W

U
T
/2

K

cl
k W

U
T
/4

K

cl
k W

U
T
/8

K

cl
k W

U
T
/1

6K

cl
k W

U
T
/3

2K

cl
k W

U
T
/6

4K

cl
k W

U
T
/1

28
K

Wakeup
Prescaler

1/4
Ultra Low Power

RC Oscillator

Bit 7 6 5 4 3 2 1 0

(0x62) WUTIF WUTIE – WUTR WUTE WUTP2 WUTP1 WUTP0 WUTCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
68Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 3 – WUTE: Wake-up Timer Enable
When the WUTE bit is set (one) the Wake-up Timer is enabled, and if the WUTE is cleared (zero) the Wake-up Timer
function is disabled. It is recommended to reset the Wake-up Timer when enabling it, by simultaneously setting the
WUTR and WUTE bits.

● Bits 2:0 – WUTP2:0: Wake-up Timer Prescaler 2, 1, and 0
The WUTP2:0 bits determine the Wake-up Timer prescaling when the Wake-up Timer is enabled. The different prescal-
ing values and their corresponding time-out periods are shown in Table 18-1. The Wake-up Timer should always be reset
when changing these bits.

Table 18-1. Wake-up Timer Prescale Select
WUP2:0 Number of Ultra Low Power RC Oscillator Cycles Typical Time-out

000 4K(4096) 32ms
001 8K(8192) 64ms
010 16K(16384) 128ms
011 32K(32768) 256ms
100 64K(65536) 512ms
101 128K(131072) 1.0s
110 256K(262144) 2.0s
111 512K(524288) 4.1s
69Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

19. Interrupts

19.1 Overview
This section describes the specifics of the interrupt handling as performed in the Atmel® AVR MCU. For a general explanation of
the AVR interrupt handling, refer to Section 13.7 “Reset and Interrupt Handling” on page 39.

19.2 Interrupt Vectors in Atmel AVR MCU

Table 19-1. Reset and Interrupt Vectors
Vector

No.
Program

Address(1) Source Interrupt Definition

1 0x0000 RESET External Pin, Power-on Reset, Brown-out Reset, Watchdog
Reset, and debugWIRE Reset

2 0x0002 INT0 External Interrupt 0
3 0x0004 PCINT0 Pin Change Interrupt 0
4 0x0006 PCINT1 Pin Change Interrupt 1
5 0x0008 WDT Watchdog Time-out Interrupt
6 0x000A WAKEUP Wake-up Timer Overflow
7 0x000C TIMER1 IC Timer/Counter 1 input Capture
8 0x000E TIMER1 COMPA Timer/Counter 1 Compare Match A
9 0x0010 TIMER1 COMPB Timer/Counter 1 Compare Match B

10 0x0012 TIMER1 OVF Timer/Counter 1 Overflow
11 0x0014 TIMER0 IC Timer/Counter 0 input Capture
12 0x0016 TIMER0 COMPA Timer/Counter 0 Compare Match A
13 0x0018 TIMER0 COMPB Timer/Counter 0 Compare Match B
14 0x001A TIMER0 OVF Timer/Counter 0 Overflow
15 0x001C LIN STATUS LIN Status Interrupt
16 0x001E LIN ERROR LIN Error Interrupt
17 0x0020 SPI, STC SPI, Serial Transfer Complete
18 0x0022 VADC CONV V-ADC Instantaneous Conversion Complete
19 0x0024 VADC ACC V-ADC Accumulated Conversion Complete
20 0x0026 CADC CONV C-ADC Instantaneous Conversion Complete
21 0x0028 CADC REG CUR C-ADC Regular Current
22 0x002A CADC ACC C-ADC Accumulated Conversion Complete
23 0x002C EE READY EEPROM Ready
24 0x002E SPM SPM Ready
25 0x0030 PLL PLL Lock Change Interrupt

Notes: 1. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The
address of each Interrupt Vector will then be the address in this table added to the start address of the Boot
Flash Section.

2. When the BOOTRST Fuses are programmed, the device will jump to the Boot Loader address at reset, see
Section 29. “Boot Loader Support – Read-While-Write Self-Programming” on page 167.
70Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Table 19-2 shows reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL settings. If the
program never enables an interrupt source, the Interrupt Vectors are not used, and regular program code can be placed at
these locations. This is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the Boot
section or vice versa.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in Atmel AVR MCU is:

Table 19-2. Reset and Interrupt Vectors Placement(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Addresses for the Atmel® AVR MCU are shown in Section 29.8.13 on page 176 and Section
29.8.14 on page 177, respectively. For the BOOTRST Fuse “1” means unprogrammed while “0” means
programmed.

Address Labels Code Comments
0x0000 jmp RESET ; Reset Handler
0x0002 jmp INT0 ; External Interrupt 0 Handler
0x0004 jmp PCINT0 ; Pin Change Interrupt 0 Handler
0x0006 jmp PCINT1 ; Pin Change Interrupt 1 Handler
0x0008 jmp WDT ; Watchdog Time-out Interrupt
0x000A jmp WAKE_UP ; Wake-up Timer Overflow Handler
0x000C jmp TIM1_IC ; Timer1 Input Capture Handler
0x000E jmp TIM1_COMPA ; Timer1 Compare A Handler
0x0010 jmp TIM1_COMPB ; Timer1 Compare B Handler
0x0012 jmp TIM1_OVF ; Timer1 Overflow Handler
0x0014 jmp TIM0_IC ; Timer0 Input Capture Handler
0x0016 jmp TIM0_COMPA ; Timer0 CompareA Handler
0x0018 jmp TIM0_COMPB ; Timer0 CompareB Handler
0x001A jmp TIM0_OVF ; Timer0 Overflow Handler
0x001C jmp LIN_STATUS ; LIN Status Handler
0x001E jmp LIN_ERROR ; LIN Error Handler
0x0020 jmp SPI, STC ; SPI, Serial Transfer Complete Handler
0x0022 jmp VADC_CONV ; V-ADC Instantaneous Conversion Complete

Handler
0x0024 jmp VADC_ACC ; V-ADC Accumulated Conversion Complete

Handler
0x0026 jmp CADC CONV ; C-ADC Instantaneous Conversion Complete

Handler
0x0028 jmp CADC_REC_CUR ; C-ADC Regular Current Handler
0x002A jmp CADC_ACC ; C-ADC Accumulated Conversion Complete

Handler
0x002C jmp EE_RDY ; EEPROM Ready Handler
0x002E jmp SPM_RDY ; Store Program Memory Ready Handler
0x0030 jmp PLL ; PLL Lock Change Interrupt Handler
0x0031 RESET: ldi r16, high(RAMEND) ; Main program start
0x0032 out SPH,r16 ; Set Stack Pointer to top of RAM
0x0033 ldi r16, low(RAMEND)
0x0034 out SPL,r16
0x0035 sei ; Enable interrupts
0x0036 <instr> xxx
0x0037
;

71Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2Kbytes and the IVSEL bit in the MCUCR Register is
set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector Addresses
is:

Address Labels Code Comments
0x0000 RESET: ldi r16,high(RAMEND ; Main program start
0x0001 out SPH,r16 ; Set Stack Pointer to top

; of RAM
0x0002 ldi r16,low(RAMEND)
0x0003 out SPL,r16
0x0004 sei ; Enable interrupts
0x0005 <instr> xxx
;
.org 0x4C02
0x4C02 jmp INT0 ; External Interrupt 0

; Handler
... ;
0x4C30 jmp PLL_LCHNG ; PLL Lock Change Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2Kbytes, the most typical and general program
setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments
.org 0x0002
0x0002 jmp INT0 ; External Interrupt 0

; Handler
... ;
0x0030 jmp PLL_LCHNG ; PLL Lock Change Handler
;
.org 0x4C00
0x4C00 RESET: ldi r16,high(RAMEND) ; Main program start
0x4C01 out SPH,r16 ; Set Stack Pointer to top

; of RAM
0x4C02 ldi r16,low(RAMEND)
0x4C03 out SPL,r16
0x4C04 sei ; Enable interrupts
0x4C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2Kbytes and the IVSEL bit in the MCUCR Register is set
before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments
;
.org 0x4C00
0x4C00 jmp RESET ; Reset Handler
0x4C02 jmp INT0 ; External Interrupt 0

; Handler
... ;
0x4C30 jmp PLL_LCHNG ; PLL Lock Change Handler
;
0x4C2E RESET: ldi r16,high(RAMEND) ; Main program start
0x4C2F out SPH,r16 ; Set Stack Pointer to top

; of RAM
0x4C30 ldi r16,low(RAMEND)
0x4C31 out SPL,r16
0x4C32 sei ; Enable interrupts
0x4C33 <instr> xxx
72Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

19.3 Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

19.4 Register Description

19.4.1 MCUCR – MCU Control Register

● Bit 1 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash memory. When this bit is
set (one), the Interrupt Vectors are moved to the beginning of the Boot Loader section of the Flash. The actual address of
the start of the Boot Flash Section is determined by the BOOTSZ Fuses. Refer to Section 29. “Boot Loader Support –
Read-While-Write Self-Programming” on page 167 for details. To avoid unintentional changes of Interrupt Vector tables,
a special write procedure must be followed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.
b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE is set,
and they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, interrupts remain
disabled for four cycles. The I-bit in the Status Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed, interrupts are
disabled while executing from the Application section. If Interrupt Vectors are placed in the Application section and
Boot Lock bit BLB12 is programed, interrupts are disabled while executing from the Boot Loader section. Refer to
Section 29. “Boot Loader Support – Read-While-Write Self-Programming” on page 167 for details on Boot Lock
bits.

● Bit 0 – IVCE: Interrupt Vector Change Enable
The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four cycles
after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the IVSEL descrip-
tion above. See Code Example below.

Assembly Code Example
Move_interrupts:

; Enable change of Interrupt Vectors
ldi r16, (1<<IVCE)
out MCUCR, r16
; Move interrupts to Boot Flash section
ldi r16, (1<<IVSEL)
out MCUCR, r16
ret

C Code Example
void Move_interrupts(void)
{

/* Enable change of Interrupt Vectors */
MCUCR = (1<<IVCE);
/* Move interrupts to Boot Flash section */
MCUCR = (1<<IVSEL);

}

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) JTD – – PUD – – IVSEL IVCE MCUCR
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0
73Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

20. External Interrupts

20.1 Overview
The External Interrupts are triggered by the INT0 pin or any of the PCINT pins. Observe that, if enabled, the interrupts will
trigger even if the INT0 or PCINT pins are configured as outputs. This feature provides a way of generating a software interrupt.
The Pin change interrupt PCI1 will trigger if any enabled PCINT9:2 pin toggles and a Pin change interrupt PCI0 will trigger if any
enabled PCINT1:0 pin toggles. PCMSK1 and PCMSK0 Registers control which pins contribute to the pin change interrupts. Pin
change interrupts on PCINT pins are detected asynchronously. This implies that these interrupts can be used for waking the
part also from sleep modes other than Idle mode.
The INT0 interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification for
the External Interrupt Control Register A – EICRA. When the INT0 interrupt is enabled and is configured as level triggered, the
interrupt will trigger as long as the pin is held low. Note that recognition of falling or rising edge interrupts on INT0 requires the
presence of an I/O clock, described in Section 15.1 “Clock Systems and their Distribution” on page 48. Low level interrupt on
INT0 is detected asynchronously. This implies that this interrupt can be used for waking the part also from sleep modes other
than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.
Note that if a level triggered interrupt is used for wake-up from Power-down, the required level must be held long enough for the
MCU to complete the wake-up to trigger the level interrupt. If the level disappears before the end of the Start-up Time, the MCU
will still wake up, but no interrupt will be generated. The start-up time is defined by the SUT Fuses as described in Section 15.
“System Clock and Clock Options” on page 48.

20.2 Pin Change Interrupt Timing
An example of timing of a pin change interrupt is shown in Figure 20-1.

Figure 20-1. Pin Change Interrupt

pin_lat

pin_sync

pcint_in_(0)
pcint_syn pcint_setflag0

x

PCINT (0) in PCMSK (x)

D Q
LE

PCINT (0)

PCINT (n)

pin_lat

pin_sync

pcint_syn

pcint_setflag

PCIF

pcint_in_(n)

clk

clk
74Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

20.3 Register Description

20.3.1 EICRA – External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

● Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0
The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask are
set. The level and edges on the external INT0 pin that activate the interrupt are defined in Table 20-1. The value on the
INT0 pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock
period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is
selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt.

20.3.2 EIMSK – External Interrupt Mask Register

● Bits 7:1 – Reserved
These bits are reserved and will always read as zero.

● Bit 0 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The
Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the External Interrupt Control Register A (EICRA) define whether the
external interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an
interrupt request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is
executed from the INT0 Interrupt Vector.

Bit 7 6 5 4 3 2 1 0
(0x69) – – – – – – ISC01 ISC00 EICRA
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 20-1. Interrupt 0 Sense Control
ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.
0 1 Any logical change on INT0 generates an interrupt request.
1 0 The falling edge of INT0 generates an interrupt request.
1 1 The rising edge of INT0 generates an interrupt request.

Bit 7 6 5 4 3 2 1 0
0x1D (0x3D) – – – – – – – INT0 EIMSK
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0
75Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

20.3.3 EIFR – External Interrupt Flag Register

● Bits 7:1 – Reserved
These bits are reserved and will always read as zero.

● Bit 0 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG and
the INT0 bit in EIMSK are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared when
INT0 is configured as a level interrupt.

20.3.4 PCICR – Pin Change Interrupt Control Register

● Bits 7:2 – Reserved
These bits are reserved bits ins the AVR MCU, and will always read as zero.

● Bit 1 – PCIE1: Pin Change Interrupt Enable 1
When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 1 is enabled.
Any change on any enabled PCINT9:2 pin will cause an interrupt. The corresponding interrupt of Pin Change Interrupt
Request is executed from the PCI1 Interrupt Vector. PCINT9:2 pins are enabled individually by the PCMSK1 Register.

● Bit 0 – PCIE0: Pin Change Interrupt Enable 0
When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 0 is enabled.
Any change on any enabled PCINT1:0 pin will cause an interrupt. The corresponding interrupt of Pin Change Interrupt
Request is executed from the PCI0 Interrupt Vector. PCINT1:0 pins are enabled individually by the PCMSK0 Register.

20.3.5 PCIFR – Pin Change Interrupt Flag Register

● Bit 7:2 – Reserved
These bits are reserved bits ins the Atmel® AVR MCU, and will always read as zero.

● Bit 1 – PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT9:2 pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG
and the PCIE1 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared
when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

● Bit 0 – PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT1:0 pin triggers an interrupt request, PCIF0 becomes set (one). If the I-bit in SREG
and the PCIE0 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared
when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0
0x1C (0x3C) – – – – – – – INTF0 EIFR
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
(0x68) – – – – – – PCIE1 PCIE0 PCICR
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x1B (0x3B) – – – – – – PCIF1 PCIF0 PCIFR
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0
76Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

20.3.6 PCMSK1 – Pin Change Mask Register 1

● Bit 7:0 – PCINT9:2: Pin Change Enable Mask 9:2
These bits select whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT9:2 is set and the PCIE1
bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT9:2 is cleared, pin change inter-
rupt on the corresponding I/O pin is disabled.

20.3.7 PCMSK0 – Pin Change Mask Register 0

● Bits 7:2 – Reserved
These bits are reserved bits ins the Atmel AVR MCU, and will always read as zero.

● Bit 1:0 – PCINT1:0: Pin Change Enable Mask 1:0
Each PCINT1:0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT1:0 is set and
the PCIE0 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT1:0 is cleared, pin
change interrupt on the corresponding I/O pin is disabled.

Bit 7 6 5 4 3 2 1 0
(0x6C) PCINT9 PCINT8 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCMSK1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
(0x6B) – – – – – – PCINT1 PCINT0 PCMSK0
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0
77Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21. I/O-Ports

21.1 Overview
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the direction of
one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI instructions.
The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). All port pins have individually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have
protection diodes to both VCC and Ground as indicated in Figure 21-1. Refer to Section 31. “Electrical Characteristics AVR
MCU” on page 192ff for a complete list of parameters.

Figure 21-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” represents the numbering letter for
the port, and a lower case “n” represents the bit number. However, when using the register or bit defines in a program, the
precise form must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical
I/O Registers and bit locations are listed in Section 21.4 “Register Description” on page 88.
Three I/O memory address locations are allocated for each port, one each for the Data Register – PORTx, Data Direction
Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins I/O location is read only, while the Data Register and the
Data Direction Register are read/write. However, writing a logic one to a bit in the PINx Register, will result in a toggle in the
corresponding bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR disables the pull-up function for all
pins in all ports when set.
Using the I/O port as General Digital I/O is described in Section 21.2 “Ports as General Digital I/O” on page 79. Many port pins
are multiplexed with alternate functions for the peripheral features on the device. How each alternate function interferes with the
port pin is described in Section 21.3 “Alternate Port Functions” on page 83. Refer to the individual module sections for a full
description of the alternate functions.
Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port as general
digital I/O.

Cpin

Rpu

Pxn
Logic

See Figure
”General Digital I/O”

for Details
78Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.2 Ports as General Digital I/O
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 21-2 shows a functional description of one I/O-port
pin, here generically called Pxn.

Figure 21-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP, and PUD are
common to all ports.

D
0

1

Q

WRx
RRx

WPx

Pxn

CLR

RESET

Synchronizer

D
AT

A
 B

U
S

PORTxn

Q

Q

L

D

Q

QD

Q

PINxn

RESET

RPx

WDx: WRITE DDRx

WRx:

WPx:
RPx:
RRx: READ PORTx REGISTER

READ PORTx PIN
WRITE PORTx REGISTER

RDx:
WRITE PORTx
READ DDRx

PUD: PULLUP DISABLE

CLKI/O:
SLEEP:

I/O CLOCK
SLEEP CONTROL

RDx

CLKI/O

PUD

WDx

SLEEP

D

Q CLR

DDxn

Q

79Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in Section 21.4 “Register Description” on
page 88, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address, and the PINxn bits
at the PINx I/O address.
The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an output
pin. If DDxn is written logic zero, Pxn is configured as an input pin.
If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To switch the pull-up
resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output pin. The port pins are tri-stated
when reset condition becomes active, even if no clocks are running.
If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is written
logic zero when the pin is configured as an output pin, the port pin is driven low (zero).

21.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction
can be used to toggle one single bit in a port.

21.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an intermediate state
with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up
enabled state is fully acceptable, as a high-impedant environment will not notice the difference between a strong high driver and
a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-ups in all ports.
Switching between input with pull-up and output low generates the same problem. The user must use either the tri-state ({DDxn,
PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.
Table 21-1 summarizes the control signals for the pin value.

Table 21-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment
0 0 X Input No Tri-state (Hi-Z)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)
80Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.2.4 Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit. As shown in
Figure 21-2, the PINxn Register bit and the preceding latch constitute a synchronizer. This is needed to avoid metastability if the
physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 21-3 shows a timing
diagram of the synchronization when reading an externally applied pin value. The maximum and minimum propagation delays
are denoted tpd,max and tpd,min respectively.

Figure 21-3. Synchronization when Reading an Externally Applied Pin Value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal
value is latched when the system clock goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As
indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between ½ and 1½ system
clock period depending upon the time of assertion.
When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 21-4. The out
instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the synchronizer
is 1 system clock period.

Figure 21-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r17

XXX XXX

0x00 0xFF

in r17, PINx

tpd, max

tpd, min

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r16

r17

out PORTx, r16 nop

0x00 0xFF

0xFF

in r17, PINx

tpd
81Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 7 as input
with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as previously discussed, a nop
instruction is included to be able to read back the value recently assigned to some of the pins.

21.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 21-2 on page 79, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The
signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-save mode to avoid high power consumption
if some input signals are left floating, or have an analog signal level close to VREG/2.
SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not enabled, SLEEP is
active also for these pins. SLEEP is also overridden by various other alternate functions as described in Section 21.3 “Alternate
Port Functions” on page 83.
If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as “Interrupt on Rising Edge, Falling
Edge, or Any Logic Change on Pin” while the external interrupt is not enabled, the corresponding External Interrupt Flag will be
set when resuming from the above mentioned Sleep mode, as the clamping in these sleep mode produces the requested logic
change.

21.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of the digital
inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to reduce current
consumption in all other modes where the digital inputs are enabled (Reset, Active mode and Idle mode).
The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this case, the pull-up will be
disabled during reset. If low power consumption during reset is important, it is recommended to use an external pull-up or pull-
down. Connecting unused pins directly to VCC or GND is not recommended, since this may cause excessive currents if the pin
is accidentally configured as an output.

Assembly Code Example(1)

...
; Define pull-ups and set outputs high
; Define directions for port pins
ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)
ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)
out PORTB,r16
out DDRB,r17
; Insert nop for synchronization
nop
; Read port pins
in r16,PINB
...

C Code Example

unsigned char i;
...
/* Define pull-ups and set outputs high */
/* Define directions for port pins */
PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);
DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);
/* Insert nop for synchronization*/
_NOP();
/* Read port pins */
i = PINB;
...

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers
82Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.3 Alternate Port Functions
Many port pins have alternate functions in addition to being general digital I/Os. Figure 21-5 shows how the port pin control
signals from the simplified Figure 21-2 on page 79 can be overridden by alternate functions. The overriding signals may not be
present in all port pins, but the figure serves as a generic description applicable to all port pins in the AVR microcontroller family.

Figure 21-5. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP, and PUD are
common to all ports. All other signals are unique for each pin.

D
0

1

Q

WRx

RRx

WPx

PTOExn

Pxn

CLR

RESET

Synchronizer

D
AT

A
 B

U
S

PORTxn

Q

0

1

Q

L

D SET

CLR CLRQ

QD

Q

PINxn

0

1

RESET

RPx

Pxn PULL-UP OVERRIDE ENABLE
Pxn PULL-UP OVERRIDE VALUE

PUD: PULL-UP DISABLEPUOExn:

Pxn PORT VALUE OVERRIDE VALUEPVOVxn:
Pxn PORT VALUE OVERRIDE ENABLEPVOExn:

Pxn DATA DIRECTION OVERRIDE ENABLE
Pxn DATA DIRECTION OVERRIDE VALUE

DDOExn:
DDOVxn:

SLEEP CONTROLSLEEP:
Pxn, PORT TOGGLE OVERRIDE ENABLEPTOExn:

Pxn DIGITAL INPUT ENABLE OVERRIDE VALUEDIEOVxn:
Pxn DIGITAL INPUT ENABLE OVERRIDE ENABLEDIEOExn:

I/O CLOCK

RDx:

RPx:
WRITE PINx

WRx:

ANALOG INPUT/OUTPUT PIN n ON PORTx
DIGITAL INPUT PIN n ON PORTx

RRx: READ PORTx REGISTER

WPx:

WRITE PORTx

AIOxn:
DIxn:

READ PORTx PIN

WDx:
READ DDRx
WRITE DDRxPUOVxn:

RDx

CLKI/O

DIxn
AIOxn

CLK:I/O

DIEOVxn

DIEOExn

PVOExn

DDOExn

PVOVxn

0

1

PUOExn

PUOVxn

0

1 DDOVxn

SLEEP

PUD

WDx

D

Q CLR

DDxn

Q

83Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Table 21-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 21-5 on page 83 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals to the alternate
function. Refer to the alternate function description for further details.

Table 21-2. Generic Description of Overriding Signals for Alternate Functions
Signal Name Full Name Description

PUOE Pull-up Override Enable
If this signal is set, the pull-up enable is controlled by the PUOV signal. If this
signal is cleared, the pull-up is enabled when {DDxn, PORTxn, PUD} =
0b010.

PUOV Pull-up Override Value If PUOE is set, the pull-up is enabled/disabled when PUOV is set/cleared,
regardless of the setting of the DDxn, PORTxn, and PUD Register bits.

DDOE Data Direction Override
Enable

If this signal is set, the Output Driver Enable is controlled by the DDOV
signal. If this signal is cleared, the Output driver is enabled by the DDxn
Register bit.

DDOV Data Direction Override
Value

If DDOE is set, the Output Driver is enabled/disabled when DDOV is
set/cleared, regardless of the setting of the DDxn Register bit.

PVOE Port Value Override
Enable

If this signal is set and the Output Driver is enabled, the port value is
controlled by the PVOV signal. If PVOE is cleared, and the Output Driver is
enabled, the port Value is controlled by the PORTxn Register bit.

PVOV Port Value Override
Value

If PVOE is set, the port value is set to PVOV, regardless of the setting of the
PORTxn Register bit.

PTOE Port Toggle Override
Enable If PTOE is set, the PORTxn Register bit is inverted.

DIEOE Digital Input Enable
Override Enable

If this bit is set, the Digital Input Enable is controlled by the DIEOV signal. If
this signal is cleared, the Digital Input Enable is determined by MCU state
(Normal mode, sleep mode).

DIEOV Digital Input Enable
Override Value

If DIEOE is set, the Digital Input is enabled/disabled when DIEOV is
set/cleared, regardless of the MCU state (Normal mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the signal is
connected to the output of the schmitt trigger but before the synchronizer.
Unless the Digital Input is used as a clock source, the module with the
alternate function will use its own synchronizer.

AIO Analog Input/Output This is the Analog Input/output to/from alternate functions. The signal is
connected directly to the pad, and can be used bi-directionally.
84Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.3.1 Alternate Functions of Port A

The Port A pins with alternate functions are shown in Table 21-3.

The alternate pin configuration is as follows:
● ADC0/SGND/PCINT0 - Port A, Bit0

ADC0: Voltage ADC Input0. This pin can serve as Input 0 for the Voltage ADC.
SGND: Voltage ADC SGND. This pin can serve as signal ground for the Voltage ADC.
PCINT0. Pin Change Interrupt 0. This pin can serve as external interrupt source.

● ADC1/SGND/PCINT1 - Port A, Bit1
ADC1: Voltage ADC Input1. This pin can serve as Input 1 for the Voltage ADC.
SGND: Voltage ADC SGND. This pin can serve as signal ground for the Voltage ADC.
PCINT1: Pin Change Interrupt 1. This pin can serve as external interrupt source.
These pins can serve as external interrupt sourceTable 21-4 relates the alternate functions of Port A to the overriding sig-
nals shown in Figure 21-5 on page 83.

Table 21-3. Port A Pins Alternate Functions
Port Pin Alternate Function

PA1 ADC1/SGND/PCINT1
(ADC Input 1, Signal Ground or Pin Change Interrupt 1)

PA0 ADC0/SGND/PCINT0
(ADC Input 0, Signal Ground or Pin Change Interrupt 0)

Table 21-4. Overriding Signals for Alternate Functions in PA1:PA0
Signal Name PA1/ADC1/SGND/PCINT1 PA0/ADC0/SGND/PCINT0

PUOE 0 0
PUOV 0 0
DDOE VAMUX = 001 VAMUX = 010
DDOV 1 1
PVOE VAMUX = 001 VAMUX = 010
PVOV 0 0
PTOE - -
DIEOE PA1DID | (PCINT1 × PCIE0) PA0DID | (PCINT0 × PCIE0)
DIEOV PA1DID PA0DID

DI PCINT1 INPUT PCINT0 INPUT

AIO ADC1 INPUT
SGND INPUT

ADC0 INPUT
SGND INPUT
85Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 21-5.

The alternate pin configuration is as follows:
● MISO/ICP10/INT0/PCINT9 - Port B, Bit7

MISO: Master Data input/Slave Data output pin for SPI channel. When the SPI is enabled as a Master, this pin is config-
ured as an input regardless of the setting of DDB7. When the SPI is enabled as a Slave, the data direction of this pin is
controlled by DDB7. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB7
bit. When not operating in SPI mode, this pin can serve as an external interrupt source.
ICP10, Timer1 Input capture source 0. The PB7 pin can serve as input capture source for Timer1.
INT0, External Interrupt source 0: The PB7 pin can serve as an external interrupt source to the MCU.
PCINT9: Pin Change Interrupt 9. This pin can serve as external interrupt source.

● MOSI/PCINT8 - Port B, Bit6
MOSI, SPI Master Data output/Slave Data input for SPI channel. When the SPI is enabled as a Slave, this pin is config-
ured as an input regardless of the setting of DDB6. When the SPI is enabled as a Master, the data direction of this pin is
controlled by DDB6. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB6
bit. When not operating in SPI mode, this pin can serve as an external interrupt source.
PCINT8: Pin Change Interrupt 8. This pin can serve as external interrupt source.

● SCK/PCINT7 - Port B, Bit5
SCK, Master Clock output/Slave Clock input pin for SPI channel. When the SPI is enabled as a Slave, this pin is config-
ured as an input regardless of the setting of DDB5. When the SPI is enabled as a Master, the data direction of this pin is
controlled by DDB5. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB5
bit.
PCINT7: Pin Change Interrupt 7. This pin can serve as external interrupt source.

● SS/PCINT6 - Port B, Bit4
SS, Slave Select input: When the SPI is enabled as a Slave, this pin is configured as an input regardless of the setting of
DDB4. As a Slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a Master, the data direc-
tion of this pin is controlled by DDB4. When the pin is forced by the SPI to be an input, the pull-up can still be controlled
by the PORTB4 bit. When not operating in SPI mode, this pin can serve as Clock Output, CPU Clock divided by 2. See
”Clock Output” on page 28.
PCINT6: Pin Change Interrupt 6. This pin can serve as external interrupt source.

● TXD/PCINT5 - Port B, Bit3
TXD: This pin can serve as TXD pin for the LIN interface.
PCINT5: Pin Change Interrupt 5. This pin can serve as external interrupt source.

Table 21-5. Port B Pins Alternate Functions
Port Pin Alternate Functions

PB7 MISO/ICP10/INT0/PCINT9 (SPI Bus Master Input/Slave Output, Timer1 Input Capture Source0, External
Interrupt or Pin Change Interrupt 9)

PB6 MOSI/PCINT8 (SPI Bus Master Output/Slave Input or Pin Change Interrupt 8)
PB5 SCK/PCINT7 (SPI Bus Serial Clock or Pin Change Interrupt 7)
PB4 SS/PCINT6 (SPI Bus Slave Select input or Pin Change Interrupt 6)
PB3 TXD/PCINT5 (LIN TXD or Pin Change Interrupt 5)
PB2 CKOUT/PCINT4 (Clock Output or Pin Change Interrupt 4)
PB1 RXD/PCINT3 (LIN RXD or Pin Change Interrupt 3)
PB0 FH/PCINT2 (Force High or Pin Change Interrupt 2)
86Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● CKOUT/PCINT4 - Port B, Bit2
CKOUT: Clock output. This pin can serve as clock output pin.
PCINT4: Pin Change Interrupt 4. This pin can serve as external interrupt source.

● RXD/PCINT3 - Port B, Bit1
RXD: This pin can serve as RXD pin for the LIN interface.
PCINT3: Pin Change Interrupt 3. This pin can serve as external interrupt source.

● FH/PCINT2 - Port B, Bit0
FH: Force High. When the PBOE0 bit in the PBOV register is set, this pin is forced high.
PCINT2: Pin Change Interrupt 2. This pin can serve as external interrupt source.

Table 21-6. Overriding Signals for Alternate Functions in PB7:PB4

Signal Name
PB7/MISO/ICP10/

INT0/ PCINT9 PB6/MOSI/PCINT8 PB5/SCK/PCINT7 PB4/SS/PCINT6
PUOE SPE × MASTER SPE × MASTER SPE × MASTER SPE × MASTER
PUOV PORTB7 × PUD PORTB7 × PUD PORTB7 × PUD PORTB7 × PUD
DDOE SPE × MASTER SPE × MASTER SPE × MASTER SPE × MASTER
DDOV 0 0 0 0
PVOE SPE × MASTER SPE × MASTER SPE × MASTER 0
PVOV SPI SLAVE SPI MASTER
PTOE 0 0 0 0

DIEOE PCINT9 × PCIE | INT0
Enable PCINT8 × PCIE PCINT7 × PCIE PCINT6 × PCIE

DIEOV 1 1 1 1

DI

INT0
ICP10

SPI MASTER
PCINT9

SPI SLAVE
PCINT8

SCK
PCINT7

SS
PCINT6

AIO - - - -

Table 21-7. Overriding Signals for Alternate Functions in PB3:PB0

Signal Name PB3/TXD/PCINT5
PB2/CKOUT/

PCINT4
PB1/RXD/
PCINT3 PB0/FH/PCINT2

PUOE LINTXEN CKOE LINRXEN PBOE0

PUOV LINTXD × PBOE3 ×
PORTB3 0 PORTB2 × PUD 0

DDOE LINTXEN CKOE LINRXEN PBOE0
DDOV LINTXD × PBOE3 CKOE 0 1
PVOE LINTXEN CKOE 0 PBOE0
PVOV LINTXD × PBOE3 CKOUT 0 1
PTOE 0 0 0 0

DIEOE PCINT5 × PCIE (PCINT4 × PCIE) |
CKOE PCINT3 PCINT2 × PCIE

DIEOV 1 PCINT4 × PCIE | CKOE 1 1

DI
T1

PCINT5
LINRXD
PCINT4

PCINT3
T0

PCINT2
AIO - - - -
87Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.4 Register Description

21.4.1 MCUCR – MCU Control Register

● Bit 4 – PUD: Pull-up Disable
When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn Registers are con-
figured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See Section 21.2.1 “Configuring the Pin” on page 80 for more
details about this feature.

21.4.2 PORTA – Port A Data Register

21.4.3 DDRA – Port A Data Direction Register

21.4.4 PINA – Port A Input Pins Address

21.4.5 PORTB – Port B Data Register

21.4.6 DDRB – Port B Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) – – CKOE PUD – – IVSEL IVCE MCUCR
Read/Write R R R/W R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x02 (0x22) – – – – – – PORTA1 PORTA0 PORTA
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x01 (0x21) – – – – – – DDA1 DDA0 DDRA
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x00 (0x20) – – – – – – PINA1 PINA0 PINA
Read/Write R R R R R R R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0
0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
88Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.4.7 PINB – Port B Input Pins Address

21.4.8 PBOV – Port B Override

● Bit 7 – PBOVCE: Port B Override Change Enable
The PBOE0 bit can only be changed by a timed sequence:

1. In the same operation, write one to the PBOVCE bit and zero to all other bits in the PBOV register.
2. Within the next four clock cycles, write zero to the PBOVCE bit and the desired values to the PBOE0 bit. This

must be done in one operation.
● Bits 6:4 - Reserved

These bits are reserved bits and will always read as zero.
● Bit 3 - PBOE3: Port B Override Enable 3

This bit overrides normal driving capabilities for the LIN transmit signal. If this bit is set, the LIN transmit signal may either
be using the internal pull-up transistor or tristating the port for the LINTX high value, depending on the PORTB3 setting.
In both cases the pin will be driven actively low for the LINTX low value.
When the PBOE3 bit is cleared, normal LINTX driving capabilities will be restored and the pin will be driven actively high
for the LINTX high value and and driven actively low for the LINTX low value. This is regardless of the PORTB3 setting.
Note that when the LIN module is disabled, the PBOE3 bit has no effect on the port functionality.
The LINTX driving capabilities is shown in Table 21-8.

● Bits 2:1 - Reserved
These bits are reserved bits and will always read as zero.

● Bit 0 - PBOE0: Port B Override Enable 0
When this bit is set, PB0 is set to one regardless of settings in the PORTB, DDRB and PINB registers. When this bit is
cleared, PB0 the overriding is disabled.

Bit 7 6 5 4 3 2 1 0
0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0
(0xDC) PBOVCE – – – PBOE3 – – PBOE0 PBOV
Read/Write R/W R R R R/W R R R/W
Initial Value 0 0 0 0 0 0 0 0

Table 21-8. LINTX Driving Capabilities
PBOE3 PORTB3 LINTX low LINTX high

0 x Active low Active high
1 0 Active low Tristated
1 1 Active low Internal pull-up
89Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

22. Timer/Counter0 and Timer/Counter1 Prescalers

22.1 Overview
Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters can have different prescaler
settings. The description below applies to both Timer/Counter1 and Timer/Counter0.

22.1.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides the fastest operation,
with a maximum Timer/Counter clock frequency equal to system clock frequency (fCLK_I/O). Alternatively, one of four taps from
the prescaler can be used as a clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or
fCLK_I/O/1024.

22.1.2 Prescaler Reset

The prescaler is free running, i.e., operates independently of the Clock Select logic of the Timer/Counter, and it is shared by
Timer/Counter1 and Timer/Counter0. Since the prescaler is not affected by the Timer/Counter’s clock select, the state of the
prescaler will have implications for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from when the timer is
enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or
1024).
It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execution. However, care must be taken
if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset will affect the prescaler period
for all Timer/Counters it is connected to.

Figure 22-1. Prescaler for Timer/Counter

Timer/Counter n Clock Source
clkTn

clkI/O

PSRSYNC

Tn

10-bit T/C Prescaler

0

CSn0

C
K

/8

C
K

/6
4

C
K

/2
56

C
K

/1
02

4

CSn1

CSn2

Synchronization

Clear
90Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

22.2 External Clock Source
An external clock source applied to the Tn pin can be used as Timer/Counter clock (clkTn). The Tn pin is sampled once every
system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the edge
detector. Figure 22-2 shows a functional equivalent block diagram of the Tn synchronization and edge detector logic. The
registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the high period of the
internal system clock.
The edge detector generates one clkTn pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it detects. See Table
22-1 on page 92 for details.

Figure 22-2. Tn Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been
applied to the Tn pin to the counter is updated.
Enabling and disabling of the clock input must be done when Tn has been stable for at least one system clock cycle, otherwise
it is a risk that a false Timer/Counter clock pulse is generated.
Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. The
external clock must be guaranteed to have less than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty
cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is half the sampling
frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency and duty cycle caused by
Oscillator source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an external
clock source is less than fclk_I/O/2.5.
An external clock source can not be prescaled.
Note: The synchronization logic on the input pins (Tn) is shown in Figure 22-2.

Tn

Synchronization Edge Detector

Tn_sync
(to Clock

Select Logic)

Q

LE

D QD QD

clkI/O
91Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

22.3 Register Description

22.3.1 TCCRnB – Timer/Counter n Control Register B

● Bits 2, 1, 0 – CSn2, CSn1, CSn0: Clock Select0, Bit 2, 1, and 0

The Clock Select n bits 2, 1, and 0 define the prescaling source of Timer n.

If external pin modes are used for the Timer/Counter n, transitions on the Tn pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

22.3.2 General Timer/Counter Control Register – GTCCR

● Bit 7 – TSM: Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the value that is written to
the PSRSYNC bit is kept, hence keeping the corresponding prescaler reset signals asserted. This ensures that the cor-
responding Timer/Counters are halted and can be configured to the same value without the risk of one of them
advancing during configuration. When the TSM bit is written to zero the PSRSYNC bit is cleared by hardware, and the
Timer/Counters start counting simultaneously.

● Bit 0 – PSRSYNC: Prescaler Reset
When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is normally cleared immedi-
ately by hardware, except if the TSM bit is set. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler
and a reset of this prescaler will affect both timers.

Bit 7 6 5 4 3 2 1 0
– – – – – CSn2 CSn1 CSn0 TCCRnB

Read/Write R R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 22-1. Clock Select Bit Description
CSn2 CSn1 CSn0 Description

0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clkI/O/(No prescaling)
0 1 0 clkI/O/8 (From prescaler)
0 1 1 clkI/O/64 (From prescaler)
1 0 0 clkI/O/256 (From prescaler)
1 0 1 clkI/O/1024 (From prescaler)
1 1 0 External clock source on Tn pin. Clock on falling edge.
1 1 1 External clock source on Tn pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0
TSM – – – – – – PSRSYNC GTCCR

Read/Write R/W R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0
92Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23. Timer/Counter(T/C0, T/C1)

23.1 Features
● Clear timer on compare match (auto reload)
● Input capture unit
● Four independent interrupt sources (TOVn, OCFnA, OCFnB, ICFn)
● 8-bit mode with two independent output compare units
● 16-bit mode with one independent output compare unit

23.2 Overview
Timer/Counter n is a general purpose 8-/16-bit Timer/Counter module, with two/one Output Compare units and Input Capture
feature.
The Atmel® AVR MCU has two Timer/Counters, Timer/Counter0 and Timer/Counter1. The functionality for both Timer/Counters
is described below. Timer/Counter0 and Timer/Counter1 have different Timer/Counter registers, as shown in Section 32.
“Register Summary” on page 203.
The Timer/Counter general operation is described in 8-/16-bit mode. A simplified block diagram of the 8-/16-bit Timer/Counter is
shown in Figure 23-1. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O
Register and bit locations are listed in the Section 23.10 “Register Description” on page 104.

Figure 23-1. 8-/16-bit Timer/Counter Block Diagram

Control Logic

TCNTnL

Fixed TOP value

TCNTnH

Timer/Counter

Count

Clear

Direction

clkTn

OCRnAOCRnB

= =

TCCRnA TCCRnB

Edge
Detector

(from Prescaler)

Clock Select

TOP

TOVn (Int. Req.)

OCnA (Int. Req.)

OCnB (Int. Req.)

ICFn (Int. Req.)

Tn

Edge
Detector

Noise
Canceler

D
AT

A
 B

U
S

=

ICPn1

ICPn2

ICPn0
93Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.2.1 Registers

The Timer/Counter Low Byte Register (TCNTnL) and Output Compare Registers (OCRnA and OCRnB) are 8-bit registers.
Interrupt request (abbreviated to Int.Req. in Figure 23-1 on page 93) signals are all visible in the Timer Interrupt Flag Register
(TIFR). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in
the figure.
In 16-bit mode the Timer/Counter consists one more 8-bit register, the Timer/Counter High Byte Register (TCNTnH).
Furthermore, there is only one Output Compare Unit in 16-bit mode as the two Output Compare Registers, OCRnA and
OCRnB, are combined to one 16-bit Output Compare Register. OCRnA contains the low byte of the word and OCRnB contains
the higher byte of the word. When accessing 16-bit registers, special procedures described in Section 23.9 “Accessing
Registers in 16-bit Mode” on page 102 must be followed.
The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the Tn pin. The Clock Select
logic block controls which clock source and edge the Timer/Counter uses to increment its value. The Timer/Counter is inactive
when no clock source is selected. The output from the Clock Select logic is referred to as the timer clock (clkTn).

23.2.2 Definitions

Many register and bit references in this section are written in general form. A lower case “n” replaces the module number, e.g.,
Timer/Counter number. A lower case “x” replaces the unit, e.g., OCRnx and ICPnx describes OCRnA/B and ICP1/0x . However,
when using the register or bit defines in a program, the precise form must be used, i.e., TCNT0L for accessing Timer/Counter0
counter value and so on.
The definitions in Table 23-1 are also used extensively throughout the document.

23.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source. The Clock Select logic is
controlled by the Clock Select (CSn2:0) bits located in the Timer/Counter Control Register n B (TCCRnB), and controls which
clock source and edge the Timer/Counter uses to increment its value. The Timer/Counter is inactive when no clock source is
selected. The output from the Clock Select logic is referred to as the timer clock (clkTn). For details on clock sources and
prescaler, see Section 22. “Timer/Counter0 and Timer/Counter1 Prescalers” on page 90

Table 23-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0.

MAX
The counter reaches its MAXimum when it becomes 0xFF (decimal 255) in 8-bit mode or
0xFFFF (decimal 65535) in 16-bit mode.

TOP

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be the fixed value 0xFF/0xFFFF (MAX) or
the value stored in the OCRnA Register.
94Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 23-2 on page 95 shows a block
diagram of the counter and its surroundings.

Figure 23-2. Counter Unit Block Diagram

Signal description (internal signals):
count Increment or decrement TCNTn by 1.
clkTn Timer/Counter clock, referred to as clkTn in the following.
top Signalize that TCNTn has reached maximum value.

The counter is incremented at each timer clock (clkTn) until it passes its TOP value and then restarts from BOTTOM. The
counting sequence is determined by the setting of the WGMn0 bits located in the Timer/Counter Control Register (TCCRnA).
For more details about counting sequences, see Section 23.8 “Timer/Counter Timing Diagrams” on page 100. clkTn can be
generated from an external or internal clock source, selected by the Clock Select bits (CSn2:0). When no clock source is
selected (CSn2:0 = 0) the timer is stopped. However, the TCNTn value can be accessed by the CPU, regardless of whether
clkTn is present or not. A CPU write overrides (has priority over) all counter clear or count operations. The Timer/Counter
Overflow Flag (TOVn) is set when the counter reaches the maximum value and it can be used for generating a CPU interrupt.

23.5 Modes of Operation
The mode of operation is defined by the Timer/Counter Width (TCWn), Input Capture Enable (ICENn) and the Waveform
Generation Mode (WGMn0)bits in Section 23.10.1 “TCCRnA – Timer/Counter n Control Register A” on page 104. Table 23-2 on
page 95 shows the different Modes of Operation.

top

TOVn
(Int. Req.)

DATA BUS

Control LogicTCNTn
clkTncount

Edge
Detector

(from Prescaler)

Clock Select

Tn

Table 23-2. Modes of Operation

Mode ICENn TCWn WGMn0
Timer/Counter Mode

of Operation TOP
Update of
OCRx at

TOV Flag
Set on

0 0 0 0 Normal 8-bit Mode 0xFF Immediate MAX (0xFF)
1 0 0 1 8-bit CTC OCRnA Immediate MAX (0xFF)
2 0 1 0 16-bit Mode 0xFFFF Immediate MAX (0xFFFF)

3 0 1 1 16-bit CTC OCRnB,
OCRnA Immediate MAX (0xFFFF)

4 1 0 0 8-bit Input Capture
mode 0xFF – MAX (0xFF)

5 1 1 0 16-bit Input Capture
mode 0xFFFF – MAX (0xFFFF)
95Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.5.1 Normal 8-bit Mode

In the Normal mode, the counter (TCNTnL) is incrementing until it overruns when it passes its maximum 8-bit value (MAX =
0xFF) and then restarts from the bottom (0x00), see Table 23-2 on page 95 for bit settings. The Overflow Flag (TOVn) will be set
in the same timer clock cycle as the TCNTnL becomes zero. The TOVn Flag in this case behaves like a ninth bit, except that it
is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOVn Flag, the timer
resolution can be increased by software. There are no special cases to consider in the Normal 8-bit mode, a new counter value
can be written anytime. The Output Compare Unit can be used to generate interrupts at some given time.

23.5.2 Clear Timer on Compare Match (CTC) 8-bit Mode

In Clear Timer on Compare or CTC mode, the OCRnA Register is used to manipulate the counter resolution, see Table 23-2 on
page 95 for bit settings. In CTC mode the counter is cleared to zero when the counter value (TCNTn) matches the OCRnA. The
OCRnA defines the top value for the counter, hence also its resolution. This mode allows greater control of the Compare Match
output frequency. It also simplifies the operation of counting external events.
The timing diagram for the CTC mode is shown in Figure 23-3 on page 96. The counter value (TCNTn) increases until a
Compare Match occurs between TCNTn and OCRnA, and then counter (TCNTn) is cleared.

Figure 23-3. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the OCFnA Flag. If the interrupt is
enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to
BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCRnA is lower than the current value of TCNTn, the counter will
miss the Compare Match. The counter will then have to count to its maximum value (0xFF) and wrap around starting at 0x00
before the Compare Match can occur. As for the Normal mode of operation, the TOVn Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

23.5.3 16-bit Mode

In 16-bit mode, the counter (TCNTnH/L) is a incrementing until it overruns when it passes its maximum 16-bit value (MAX =
0xFFFF) and then restarts from the bottom (0x0000), see Table 23-2 on page 95 for bit settings. The Overflow Flag (TOVn) will
be set in the same timer clock cycle as the TCNTnH/L becomes zero. The TOVn Flag in this case behaves like a 17th bit,
except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOVn
Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new
counter value can be written anytime. The Output Compare Unit can be used to generate interrupts at some given time.

1 2

TCNTn

Period
3

OCnx Interrupt
Flag Set

3

96Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.5.4 Clear Timer on Compare Match (CTC) 16-bit Mode

In Clear Timer on Compare 16-bit mode, OCRAnA/B Registers are used to manipulate the counter resolution, see Table 23-2
on page 95 for bit settings. In CTC mode the counter is cleared to zero when the counter value (TCNTn) matches OCRnA/B,
where OCRnB represents the eight most significant bits and OCRnA represents the eight least significant bits. OCRnA/B
defines the top value of the counter, hence also its resolution. This mode allows greater control of the Compare Match output
frequency. It also simplifies the operation of counting external events.
An interrupt can be generated each time the counter reaches the TOP value by using the OCFnA flag. If the interrupt is enabled,
the interrupt handler routine can be used for updating the TOP value. However, changing the TOP to a value close the
BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCRnA/B is lower than the current value of TCNTn, the counter
will miss the Compare Match. The counter will then have to count to its maximum value (0xFFFF) and wrap around starting at
0x0000 before Compare Match can occur. As for the 16-bit Mode, the TOVn Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

23.5.5 8-bit Input Capture Mode

The Timer/Counter can be used in a 8-bit Input Capture mode, see Table 23-2 on page 95 for bit settings. For full description,
see Section 23.6 “Input Capture Unit” on page 97.

23.5.6 16-bit Input Capture Mode

The Timer/Counter can also be used in a 16-bit Input Capture mode, see Table 23-2 on page 95 for bit settings. For full
description, see Section 23.6 “Input Capture Unit” on page 97.

23.6 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a time-stamp indicating
time of occurrence. The external signal indicates an event, or multiple events. For Timer/Counter0, the event is triggered by
completion of a CADC Instantaneous Conversion (ICP00) or completion of a CADC Accumulated Conversion (ICP01). For
Timer/Counter1, the events can be applied by the PB7 pin (ICP10), by the LIN RX Complete signal (ICP11) or by the LIN TX
Complete signal (ICP12). The time-stamps can then be used to calculate frequency, duty-cycle, and other features of the signal
applied. Alternatively the time-stamps can be used for creating a log of the events.
The Input Capture unit is illustrated by the block diagram shown in Figure 23-4 on page 97. The elements of the block diagram
that are not directly a part of the Input Capture unit are gray shaded.

Figure 23-4. Input Capture Unit Block Diagram

ICFn (Int. Req.)

OCRnA (8-bit)OCRnB (8-bit)

ICRn (16-bit Register)

TEMP (8-bit)

TCNTnL (8-bit)TCNTnH (8-bit)

TCNTn (16-bit Counter)

DATA BUS (8-bit)

Noise
Canceler

Edge
Detector

ICPn1

ICPn2

ICSn

ICNCn

WRITE

ICESn

ICPn0
97Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The Output Compare Register OCRnA is a dual-purpose register that is also used as an 8-bit Input Capture Register ICRn. In
16-bit Input Capture mode the Output Compare Register OCRnB serves as the high byte of the Input Capture Register ICRn. In
8-bit Input Capture mode the Output Compare Register OCRnB is free to be used as a normal Output Compare Register, but in
16-bit Input Capture mode the Output Compare Unit cannot be used as there are no free Output Compare Register(s). Even
though the Input Capture register is called ICRn in this section, it is referring to the Output Compare Register(s). For more
information on how to access the 16-bit registers refer to Section 23.9 “Accessing Registers in 16-bit Mode” on page 102.
When a change of the logic level (an event) occurs on the Input Capture pin (ICPx), and this change confirms to the setting of
the edge detector, a capture will be triggered. When a capture is triggered, the value of the counter (TCNTn) is written to the
Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at the same system clock as the TCNTn value is copied into
Input Capture Register. If enabled (TICIEn=1), the Input Capture Flag generates an Input Capture interrupt. The ICFn flag is
automatically cleared when the interrupt is executed. Alternatively the ICFn flag can be cleared by software by writing a logical
one to its I/O bit location.

23.6.1 Input Capture Trigger Source

The default trigger source for the Input Capture unit is the completion of a CADC Instantaneous Conversion in Timer/Counter0
and the I/O port PB7 in Timer/Counter1. Alternatively can the completion of CADC Accumulated Conversion event be used as
trigger source for Timer/Counter0, and the LIN RX and TX Complete events be used as trigger sources for Timer/Counter1. The
Input Capture Trigger sources are selected as trigger sources by setting the Input Capture Select bits. Be aware that changing
trigger source can trigger a capture. The Input Capture Flag must therefore be cleared after the change.
Both Input Capture inputs are sampled using the same technique. The edge detector is also identical. However, when the noise
canceler is enabled, additional logic is inserted before the edge detector, which increases the delay by four system clock cycles.
An Input Capture on Timer/Counter1 can also be triggered by software by controlling the port of the PB7 pin.

23.6.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is monitored
over four samples, and all four must be equal for changing the output that in turn is used by the edge detector.
The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in Section 23.10.1 “TCCRnA –
Timer/Counter n Control Register A” on page 104. When enabled the noise canceler introduces additional four system clock
cycles of delay from a change applied to the input, to the update of the ICRn Register. The noise canceler uses the system
clock and is therefore not affected by the prescaler.

23.6.3 Using the Input Capture Unit

The main challenge when using the Input Capture unit is to assign enough processor capacity for handling the incoming events.
The time between two events is critical. If the processor has not read the captured value in the ICRn Register before the next
event occurs, the ICRn will be overwritten with a new value. In this case the result of the capture will be incorrect.
When using the Input Capture interrupt, the ICRn Register should be read as early in the interrupt handler routine as possible.
The maximum interrupt response time is dependent on the maximum number of clock cycles it takes to handle any of the other
interrupt requests.
Measurement of an external signal duty cycle requires that the trigger edge is changed after each capture. Changing the edge
sensing must be done as early as possible after the ICRn Register has been read. After a change of the edge, the Input Capture
Flag (ICFn) must be cleared by software (writing a logical one to the I/O bit location). For measuring frequency only, the trigger
edge change is not required.
98Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.7 Output Compare Unit
The comparator continuously compares the Timer/Counter (TCNTn) with the Output Compare Registers (OCRnA and OCRnB),
and whenever the Timer/Counter equals to the Output Compare Regisers, the comparator signals a match. A match will set the
Output Compare Flag at the next timer clock cycle. In 8-bit mode the match can set either the Output Compare Flag OCFnA or
OCFnB, but in 16-bit mode the match can set only the Output Compare Flag OCFnA as there is only one Output Compare Unit.
If the corresponding interrupt is enabled, the Output Compare Flag generates an Output Compare interrupt. The Output
Compare Flag is automatically cleared when the interrupt is executed. Alternatively, the flag can be cleared by software by
writing a logical one to its I/O bit location. Figure 23-5 on page 99 shows a block diagram of the Output Compare unit.

Figure 23-5. Output Compare Unit, Block Diagram

Table 23-3. Timer/Counter0 Input Capture Source (ICS)
ICS[1:0] Source
00(1)(2) ICP00: CADC Instantaneous Conversion Complete Interrupt
01(1)(2) ICP01: CADC Accumulated Conversion Complete Interrupt

10 Reserved for future use
11 Reserved for future use

Notes: 1. The noise canceler may filter out this source and it is therefore not recommended to use noise canceler with
this source.

2. If this interrupt is chosen as the Input Capture source, an Input Capture event will generate both the chosen
interrupt and the Input Capture interrupt. If both interrupts are enabled, the sequence in which the interrupts
are handled depends on a number of factors. The application software must therefore allow for both the Input
Capture interrupt being handled before the chosen interrupt trigger, and after the chosen interrupt trigger.

Table 23-4. Timer/Counter1 Input Capture Source (ICS)
ICS[1:0] Source

00 ICP10: Port PB7
01(1)(2) ICP11: LIN RX Complete Interrupt
10(1)(2) ICP12: LIN TX Complete Interrupt

11 Reserved for future use
Notes: 1. The noise canceler may filter out this source and it is therefore not recommended to use noise canceler with this

source.
2. If this interrupt is chosen as the Input Capture source, an Input Capture event will generate both the chosen

interrupt and the Input Capture interrupt. If both interrupts are enabled, the sequence in which the interrupts are
handled depends on a number of factors. The application software must therefore allow for both the Input Cap-
ture interrupt being handled before the chosen interrupt trigger, and after the chosen interrupt trigger.

OCFnx (Int. Req.)

= (8/16-bit Comparator)

OCRnx TCNTn

DATA BUS
99Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.7.1 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNTnH/L Register will block any Compare Match that occur in the next timer clock cycle, even
when the timer is stopped. This feature allows OCRnA/B to be initialized to the same value as TCNTn without triggering an
interrupt when the Timer/Counter clock is enabled.

23.7.2 Using the Output Compare Unit

Since writing TCNTnH/L will block all Compare Matches for one timer clock cycle, there are risks involved when changing
TCNTnH/L when using the Output Compare Unit, independently of whether the Timer/Counter is running or not. If the value
written to TCNTnH/L equals the OCRnA/B value, the Compare Match will be missed.

23.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore shown as a clock enable signal in the
following figures. The figures include information on when Interrupt Flags are set. Figure 23-6 contains timing data for basic
Timer/Counter operation. The figure shows the count sequence close to the MAX value.

Figure 23-6. Timer/Counter Timing Diagram, no Prescaling

Figure 23-7 shows the same timing data, but with the prescaler enabled.

Figure 23-7. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

MAX - 1

clkI/O

(clkI/O/1)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1

MAX - 1

clkI/O

(clkI/O/8)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1
100Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 23-8 shows the setting of OCFnA and OCFnB in Normal mode.

Figure 23-8. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (fclk_I/O/8)

Figure 23-9 shows the setting of OCFnA and the clearing of TCNTn in CTC mode.

Figure 23-9. Timer/Counter Timing Diagram, CTC mode, with Prescaler (fclk_I/O/8)

OCRnx - 1

clkI/O

(clkI/O/8)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx OCRnx + 1

OCRnx Value

OCRnx + 2

TOP - 1

clkPCK

(clkPCK/8)

TCNTn
(CTC)

OCRnx

OCFnx

clkTn

TOP BOTTOM

TOP

BOTTOM + 1
101Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.9 Accessing Registers in 16-bit Mode
In 16-bit mode (the TCWn bit is set to one) the TCNTnH/L and OCRnA/B or TCNTnL/H and OCRnB/A are 16-bit registers that
can be accessed by the AVR CPU via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write
operations. The 16-bit Timer/Counter has a single 8-bit register for temporary storing of the high byte of the 16-bit access. The
same temporary register is shared between all 16-bit registers. Accessing the low byte triggers the 16-bit read or write
operation. When the low byte of a 16-bit register is written by the CPU, the high byte stored in the temporary register, and the
low byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit register is read by
the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock cycle as the low byte is read.
There is one exception in the temporary register usage. In the Output Compare mode the 16-bit Output Compare Register
OCRnA/B is read without the temporary register, because the Output Compare Register contains a fixed value that is only
changed by CPU access. However, in 16-bit Input Capture mode the ICRn register formed by the OCRnA and OCRnB registers
must be accessed with the temporary register.
To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read before the
high byte.
The following code examples show how to access the 16-bit timer registers assuming that no interrupts updates the temporary
register. The same principle can be used directly for accessing the OCRnA/B registers.

The assembly code example returns the TCNTnH/L value in the r17:r16 register pair.
It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two instructions
accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or any other of the
16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when both the main code
and the interrupt code update the temporary register, the main code must disable the interrupts during the 16-bit access.

Assembly Code Example

...
; Set TCNTn to 0x01FF
ldi r17,0x01
ldi r16,0xFF
out TCNTnH,r17
out TCNTnL,r16
; Read TCNTn into r17:r16
in r16,TCNTnL
in r17,TCNTnH
...

C Code Example

unsigned int i;
...
/* Set TCNTn to 0x01FF */
TCNTn = 0x1FF;
/* Read TCNTn into i */
i = TCNTn;
...

Note: 1. See Section 12. “About Code Examples” on page 34
102Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The following code examples show how to do an atomic read of the TCNTn register contents. Reading any of the OCRn register
can be done by using the same principle.

The assembly code example returns the TCNTnH/L value in the r17:r16 register pair.

Assembly Code Example

TIMn_ReadTCNTn:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Read TCNTn into r17:r16
in r16,TCNTnL
in r17,TCNTnH
; Restore global interrupt flag
out SREG,r18
ret

C Code Example

unsigned int TIMn_ReadTCNTn(void)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNTn into i */
i = TCNTn;
/* Restore global interrupt flag */
SREG = sreg;
return i;

}

Note: 1. See Section 12. “About Code Examples” on page 34
103Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The following code examples show how to do an atomic write of the TCNTnH/L register contents. Writing any of the OCRnA/B
registers can be done by using the same principle.

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNTnH/L.

23.9.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only needs
to be written once. However, note that the same rule of atomic operation described previously also applies in this case.

23.10 Register Description

23.10.1 TCCRnA – Timer/Counter n Control Register A

● Bit 7– TCWn: Timer/Counter Width
When this bit is written to one 16-bit mode is selected. Timer/Counter n width is set to 16-bits and the Output Compare
Registers OCRnA and OCRnB are combined to form one 16-bit Output Compare Register. Because the 16-bit registers
TCNTnH/L and OCRnB/A are accessed by the AVR CPU via the 8-bit data bus, special procedures must be followed.
These procedures are described in Section 23.9 “Accessing Registers in 16-bit Mode” on page 102.

● Bit 6– ICENn: Input Capture Mode Enable
The Input Capture Mode is enabled when this bit is written to one.

Assembly Code Example

TIMn_WriteTCNTn:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Set TCNTn to r17:r16
out TCNTnH,r17
out TCNTnL,r16
; Restore global interrupt flag
out SREG,r18
ret

C Code Example

void TIMn_WriteTCNTn(unsigned int i)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Set TCNTn to i */
TCNTn = i;
/* Restore global interrupt flag */
SREG = sreg;

}

Note: 1. See Section 12. “About Code Examples” on page 34

Bit 7 6 5 4 3 2 1 0
TCWn ICENn ICNCn ICESn – – – WGMn0 TCCRnA

Read/Write R/W R/W R/W R/W R/W R R R/W
Initial Value 0 0 0 0 0 0 0 0
104Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 5 – ICNCn: Input Capture Noise Canceler
Setting this bit activates the Input Capture Noise Canceler. When the noise canceler is activated, the input from the Input
Capture Source is filtered. The filter function requires four successive equal valued samples of the Input Capture Source
for changing its output. The Input Capture is therefore delayed by four System Clock cycles when the noise canceler is
enabled.

● Bit 4 – ICESn: Input Capture Edge Select
This bit selects which edge on the Input Capture Source that is used to trigger a capture event. When the ICESn bit is
written to zero, a falling (negative) edge is used as trigger, and when the ICESn bit is written to one, a rising (positive)
edge will trigger the capture. When a capture is triggered according to the ICESn setting, the counter value is copied into
the Input Capture Register. The event will also set the Input Capture Flag (ICFn), and this can be used to cause an Input
Capture Interrupt, if this interrupt is enabled.

● Bits 3 – Reserved
This bit is reserved in the Atmel® AVR MCU and should always be written to zero.

● Bits 2:1 – Reserved
These bits are reserved bits in the AVR MCU and will always read as zero.

● Bit 0 – WGMn0: Waveform Generation Mode
This bit controls the counting sequence of the counter, the source for maximum (TOP) counter value, see Figure 23-6 on
page 100. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter) and Clear Timer on
Compare Match (CTC) mode (see Section 23.8 “Timer/Counter Timing Diagrams” on page 100).

23.10.2 TCCRnC – Timer/Counter n Control Register C

● Bit 7:2 – Reserved
These bits are reserved bits in the Atmel® AVR MCU and will always read as zero.

● Bit 1:0 – ICS[1:0]: Input Capture Select 1:0
These bits control which Input Capture source that should trigger the Timer/Counter Input Capture functionality. To also
trigger the Timer/Counter n Input Capture interrupt, the TICIEn bit in the Timer Interrupt Mask Register TIMSK) must be
set.
See Table 23-3 on page 99 and Table 23-4 on page 99 for Input Capture sources.

23.10.3 TCNTnL – Timer/Counter n Register Low Byte

The Timer/Counter Register TCNTnL gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit
counter. Writing to the TCNTnL Register blocks (disables) the Compare Match on the following timer clock. Modifying the
counter (TCNTnL) while the counter is running, introduces a risk of missing a Compare Match between TCNTnL and the
OCRnx Registers. In 16-bit mode the TCNTnL register contains the lower part of the 16-bit Timer/Counter n Register.

Bit 7 6 5 4 3 2 1 0
– – – – – – ICn1 ICn0 TCCRnC

Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
TCNTnL[7:0] TCNTnL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
105Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.10.4 TCNTnH – Timer/Counter n Register High Byte

When 16-bit mode is selected (the TCWn bit is set to one) the Timer/Counter Register TCNTnH combined to the Timer/Counter
Register TCNTnL gives direct access, both for read and write operations, to the Timer/Counter unit 16-bit counter. To ensure
that both the high and low bytes are read and written simultaneously when the CPU accesses these registers, the access is
performed using an 8-bit temporary high byte register (TEMP). This temporary register is shared by all the other 16-bit registers.
See Section 23.9 “Accessing Registers in 16-bit Mode” on page 102.

23.10.5 OCRnA – Timer/Counter n Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the counter value (TCNTnL). A
match can be used to generate an Output Compare interrupt.
In 16-bit mode the OCRnA register contains the low byte of the 16-bit Output Compare Register. To ensure that both the high
and the low bytes are written simultaneously when the CPU writes to these registers, the access is performed using an 8-bit
temporary high byte register (TEMP). This temporary register is shared by all the other 16-bit registers. See Section 23.9
“Accessing Registers in 16-bit Mode” on page 102.

23.10.6 OCRnB – Timer/Counter n Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the counter value (TCNTnL in 8-bit
mode and TCNTnH in 16-bit mode). A match can be used to generate an Output Compare interrupt.
In 16-bit mode the OCRnB register contains the high byte of the 16-bit Output Compare Register. To ensure that both the high
and the low bytes are written simultaneously when the CPU writes to these registers, the access is performed using an 8-bit
temporary high byte register (TEMP). This temporary register is shared by all the other 16-bit registers. See Section 23.9
“Accessing Registers in 16-bit Mode” on page 102.

23.10.7 TIMSKn – Timer/Counter n Interrupt Mask Register

● Bit 3 – ICIEn: Timer/Counter n Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Counter
n Input Capture interrupt is enabled. The corresponding Interrupt Vector (see Section 19. “Interrupts” on page 70) is exe-
cuted when the ICFn flag, located in TIFRn, is set.

● Bit 2 – OCIEnB: Timer/Counter n Output Compare Match B Interrupt Enable
When the OCIEnB bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter Compare Match B
interrupt is enabled. The corresponding interrupt is executed if a Compare Match in Timer/Counter occurs, i.e., when the
OCFnB bit is set in the Timer/Counter Interrupt Flag Register – TIFRn.

Bit 7 6 5 4 3 2 1 0
TCNTnH[7:0] TCNTnH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
OCRnA[7:0] OCRnA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
OCRnB[7:0] OCRnB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
– – – – ICIEn OCIEnB OCIEnA TOIEn TIMSKn

Read/Write R R R R R/W R/W R/W R
Initial Value 0 0 0 0 0 0 0 0
106Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 1 – OCIEnA: Timer/Counter n Output Compare Match A Interrupt Enable
When the OCIEnA bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter n Compare Match A
interrupt is enabled.
The corresponding interrupt is executed if a Compare Match in Timer/Counter n occurs, i.e., when the OCFnA bit is set in
the Timer/Counter n Interrupt Flag Register – TIFRn.

● Bit 0 – TOIEn: Timer/Counter n Overflow Interrupt Enable
When the TOIEn bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter n Overflow interrupt is
enabled. The corresponding interrupt is executed if an overflow in Timer/Counter n occurs, i.e., when the TOVn bit is set
in the Timer/Counter n Interrupt Flag Register – TIFRn.

23.10.8 TIFRn – Timer/Counter n Interrupt Flag Register

● Bits 3 – ICFn: Timer/Counter n Input Capture Flag
This flag is set when a capture event occurs, according to the setting of ICENn, ICESn and ICSn[1:0] bits in the TCCRnA
and TCCRnC Registers.
ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, ICFn can be cleared by
writing a logic one to its bit location.

● Bit 2 – OCFnB: Output Compare Flag n B
The OCFnB bit is set when a Compare Match occurs between the Timer/Counter and the data in OCRnB – Output Com-
pare Register n B. OCFnB is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, OCFnB is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEnB (Timer/Counter Com-
pare B Match Interrupt Enable), and OCFnB are set, the Timer/Counter Compare Match Interrupt is executed.
The OCFnB is not set in 16-bit Output Compare mode when the Output Compare Register OCRnB is used as the high
byte of the 16-bit Output Compare Register or in 16-bit Input Capture mode when the Output Compare Register OCRnB
is used as the high byte of the Input Capture Register.

● Bit 1– OCFnA: Output Compare Flag n A
The OCFnA bit is set when a Compare Match occurs between the Timer/Counter n and the data in OCRnA – Output
Compare Register n. OCFnA is cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, OCFnA is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEnA (Timer/Counter n Compare
Match Interrupt Enable), and OCFnA are set, the Timer/Counter n Compare Match Interrupt is executed.
The OCFnA is also set in 16-bit mode when a Compare Match occurs between the Timer/Counter n and 16-bit data in
OCRnB/A. The OCFnA is not set in Input Capture mode when the Output Compare Register OCRnA is used as an Input
Capture Register.

● Bit 0 – TOVn: Timer/Counter n Overflow Flag
The bit TOVn is set when an overflow occurs in Timer/Counter n. TOVn is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, TOVn is cleared by writing a logic one to the flag. When the SREG I-
bit, TOIEn (Timer/Counter n Overflow Interrupt Enable), and TOVn are set, the Timer/Counter n Overflow interrupt is
executed.

Bit 7 6 5 4 3 2 1 0
– – – – ICFn OCFnB OCFnA TOVn TIFRn

Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
107Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

24. SPI – Serial Peripheral Interface

24.1 Features
● Full-duplex, three-wire synchronous data transfer
● Master or slave operation
● LSB first or MSB first data transfer
● Seven programmable bit rates
● End of transmission interrupt flag
● Write collision protection flag
● Wake-up from Idle Mode
● Double speed (CK/2) Master SPI Mode

24.2 Overview
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the Atmel® AVR MCU and
peripheral devices or between several AVR devices.
When the SPI is not used, power consumption can be minimized by writing the PRSPI bit in PRR0 to one. See Section 16.7.2
“PRR0 – Power Reduction Register 0” on page 57 for details on how to use the PRSPI bit.

Figure 24-1. SPI Block Diagram(1)

Note: 1. Refer to “Alternate Port Functions” on page 83 for SPI pin placement.

8-Bit Shift Register

Read Data Buffer

SPI Control RegisterSPI Status Register

MSTR

SPI Clock (Master)

SPE
SPI Control

SPI Interrupt
Request

Select Clock
Logic

MISO

Clock

8

8 8

S

M

S

M

M

S

MSB LSB

S
P

IE

S
P

E

W
C

O
L

S
P

IF

S
P

I2
X

S
P

I2
X

S
P

R
1

M
S

T
R

S
P

E

D
O

R
D

S
P

R
0

D
O

R
D

M
S

T
R

C
P

O
L

C
P

H
A

S
P

R
1

S
P

R
0

MOSI

SCK

SS

Divider
/2/4/8/16/32/64/128

XTAL

Internal
Data Bus

Pin
Control
Logic
108Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The interconnection between Master and Slave CPUs with SPI is shown in Figure 24-2. The system consists of two shift
Registers, and a Master clock generator. The SPI Master initiates the communication cycle when pulling low the Slave Select
SS pin of the desired Slave. Master and Slave prepare the data to be sent in their respective shift Registers, and the Master
generates the required clock pulses on the SCK line to interchange data. Data is always shifted from Master to Slave on the
Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In – Slave Out, MISO, line. After each data packet,
the Master will synchronize the Slave by pulling high the Slave Select, SS, line.
When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled by user software
before communication can start. When this is done, writing a byte to the SPI Data Register starts the SPI clock generator, and
the hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an interrupt is requested. The
Master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high the Slave Select,
SS line. The last incoming byte will be kept in the Buffer Register for later use.
When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high. In
this state, software may update the contents of the SPI Data Register, SPDR, but the data will not be shifted out by incoming
clock pulses on the SCK pin until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is requested. The Slave may
continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be kept in the
Buffer Register for later use.

Figure 24-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to be
transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When receiving data, however,
a received character must be read from the SPI Data Register before the next character has been completely shifted in.
Otherwise, the first byte is lost.
In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock
signal, the frequency of the SPI clock should never exceed fosc/4.
When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to Table 24-1 on
page 109. For more details on automatic port overrides, refer to Section 21.3 “Alternate Port Functions” on page 83.

Table 24-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined
SCK User Defined Input
SS User Defined Input

Note: 1. See Section 21.3.2 “Alternate Functions of Port B” on page 86 for a detailed description of how to define the
direction of the user defined SPI pins.

LSBSLAVEMSB

8 Bit Shift Register

LSB

Shift
Enable

MASTERMSB

SS

SCK

SS

SCK

MOSIMOSI

MISOMISO

8 Bit Shift Register

SPI
Clock Generator
109Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The following code examples show how to initialize the SPI as a Master and how to perform a simple transmission. DDR_SPI in
the examples must be replaced by the actual Data Direction Register controlling the SPI pins. DD_MOSI, DD_MISO and
DD_SCK must be replaced by the actual data direction bits for these pins. E.g., if MOSI is placed on pin PB5, replace DD_MOSI
with DDB5 and DDR_SPI with DDRB.

Assembly Code Example(1)

SPI_MasterInit:
; Set MOSI and SCK output, all others input
ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)
out DDR_SPI,r17
; Enable SPI, Master, set clock rate fck/16
ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)
out SPCR,r17
ret

SPI_MasterTransmit:
; Start transmission of data (r16)
out SPDR,r16

Wait_Transmit:
; Wait for transmission complete
sbis SPSR,SPIF
rjmp Wait_Transmit
ret

C Code Example(1)

void SPI_MasterInit(void)
{

/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)
{

/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while(!(SPSR & (1<<SPIF)))

;
}

Note: 1. See Section 12. “About Code Examples” on page 34
110Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

The following code examples show how to initialize the SPI as a Slave and how to perform a simple reception.

Assembly Code Example(1)

SPI_SlaveInit:
; Set MISO output, all others input
ldi r17,(1<<DD_MISO)
out DDR_SPI,r17
; Enable SPI
ldi r17,(1<<SPE)
out SPCR,r17
ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR,SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in r16,SPDR
ret

C Code Example(1)

void SPI_SlaveInit(void)
{

/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO);
/* Enable SPI */
SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)
{

/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))

;
/* Return Data Register */
return SPDR;

}

Note: 1. See Section 12. “About Code Examples” on page 34
111Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

24.3 SS Pin Functionality

24.3.1 Slave Mode

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is held low, the SPI is activated, and
MISO becomes an output if configured so by the user. All other pins are inputs. When SS is driven high, all pins are inputs, and
the SPI is passive, which means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin is
driven high.
The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the master clock generator.
When the SS pin is driven high, the SPI slave will immediately reset the send and receive logic, and drop any partially received
data in the Shift Register.

24.3.2 Master Mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the direction of the SS pin.
If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically, the pin will be
driving the SS pin of the SPI Slave.
If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin is driven low by peripheral
circuitry when the SPI is configured as a Master with the SS pin defined as an input, the SPI system interprets this as another
master selecting the SPI as a slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of the SPI becoming a Slave, the
MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt routine will
be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possibility that SS is driven low, the
interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by a slave select, it must be set by
the user to re-enable SPI Master mode.

24.4 Data Modes
There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits CPHA
and CPOL. The SPI data transfer formats are shown in Figure 24-3 and Figure 24-4 on page 113. Data bits are shifted out and
latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is clearly seen by
summarizing Table 24-3 on page 114 and Table 24-4 on page 114, as done in Table 24-2.

Table 24-2. SPI Modes
SPI Mode Conditions Leading Edge Trailing Edge

0 CPOL=0, CPHA=0 Sample (Rising) Setup (Falling)

1 CPOL=0, CPHA=1 Setup (Rising) Sample (Falling)

2 CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)

3 CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)
112Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 24-3. SPI Transfer Format with CPHA = 0

Figure 24-4. SPI Transfer Format with CPHA = 1

LSB
MSB

Bit 1
Bit 6

Bit 2
Bit 5

Bit 3
Bit 4

Bit 4
Bit 3

Bit 5
Bit 2

Bit 6
Bit 1

MSB
LSB

MSB first (DORD = 0)
LSB first (DORD =1)

SCK (CPOL = 0)
mode 0

SCK (CPOL = 1)
mode 2

SS

SAMPLE -
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

LSB
MSB

Bit 1
Bit 6

Bit 2
Bit 5

Bit 3
Bit 4

Bit 4
Bit 3

Bit 5
Bit 2

Bit 6
Bit 1

MSB
LSB

MSB first (DORD = 0)
LSB first (DORD =1)

SCK (CPOL = 0)
mode 1

SCK (CPOL = 1)
mode 3

SS

SAMPLE -
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN
113Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

24.5 Register Description

24.5.1 SPCR – SPI Control Register

● Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if the Global Interrupt
Enable bit in SREG is set.

● Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.

● Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.

● Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic zero. If SS is configured
as an input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR will become set. The user will
then have to set MSTR to re-enable SPI Master mode.

● Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when idle. Refer to Fig-
ure 24-3 and Figure 24-4 for an example. The CPOL functionality is summarized below.

● Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last) edge of
SCK. Refer to Figure 24-3 and Figure 24-4 for an example. The CPHA functionality is summarized below.

Bit 7 6 5 4 3 2 1 0
0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 24-3. CPOL Functionality
CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 24-4. CPHA Functionality
CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample
114Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have no effect on the Slave.
The relationship between SCK and the Oscillator Clock frequency fosc is shown in the following table:

24.5.2 SPSR – SPI Status Register

● Bit 7 – SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in SPCR is set and global inter-
rupts are enabled. If SS is an input and is driven low when the SPI is in Master mode, this will also set the SPIF Flag.
SPIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the SPIF bit is
cleared by first reading the SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

● Bit 6 – WCOL: Write Collision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF bit)
are cleared by first reading the SPI Status Register with WCOL set, and then accessing the SPI Data Register.

● Bit 5:1 – Reserved
These bits are reserved bits in the Atmel® AVR MCU and will always read as zero.

● Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI is in Master mode (see
Table 24-5 on page 115). This means that the minimum SCK period will be two CPU clock periods. When the SPI is con-
figured as Slave, the SPI is only guaranteed to work at fosc/4 or lower.
The SPI interface on the Atmel AVR MCU is also used for program memory and EEPROM downloading or uploading.
See Table 30.6 on page 183 for serial programming and verification.

24.5.3 SPDR – SPI Data Register

The SPI Data Register is a read/write register used for data transfer between the Register File and the SPI Shift Register.
Writing to the register initiates data transmission. Reading the register causes the Shift Register Receive buffer to be read.

Table 24-5. Relationship Between SCK and the Oscillator Frequency
SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4
0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2
1 0 1 fosc/8
1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0
0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x2E (0x4E) MSB LSB SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value X X X X X X X X Undefined
115Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25. LIN/UART

25.1 Features
● Single master with multiple slaves concept
● Low cost Silicon implementation based on common UART/SCI interface
● Self synchronization with on-chip oscillator in Slave Node
● Deterministic signal transmission with signal propagation time computable in advance
● Low cost single-wire implementation

25.2 Overview
The LIN (Local Interconnect Network) is a serial communications protocol which efficiently supports the control of mechatronics
nodes in distributed automotive applications.
LIN provides a cost efficient bus communication where the bandwidth and versatility of CAN are not required. If LIN is not
required, the controller alternatively can be programmed as Universal Asynchronous serial Receiver and Transmitter (UART).

25.3 LIN Features
● Hardware implementation of LIN 2.1 (LIN 1.3 compatibility)
● Small, CPU efficient and independent Master/Slave routines based on “LIN Work Flow Concept” of LIN 2.1 specification
● Automatic LIN header handling and filtering of irrelevant LIN frames
● Automatic LIN response handling
● Extended LIN error detection and signaling
● Hardware frame time-out detection
● Automatic re-synchronization to ensure proper frame integrity
● Fully flexible extended frames support capabilities

25.4 UART Features
● Full duplex operation (independent serial receive and transmit processes)
● Asynchronous operation
● High resolution baud rate generator
● Hardware support of 8 data bits, odd/even/no parity bit, 1 stop bit frames
● Data over-run and framing error detection
116Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.5 LIN Protocol

25.5.1 Master and Slave

A LIN cluster consists of one master task and several slave tasks. A master node contains the master task as well as a slave
task. All other nodes contain a slave task only.

Figure 25-1. LIN Cluster with One Master Node and “n” Slave Nodes

The master task decides when and which frame shall be transferred on the bus. The slave tasks provide the data transported by
each frame. Both the master task and the slave task are parts of the Frame handler

25.5.2 Frames

A frame consists of a header (provided by the master task) and a response (provided by a slave task). The header consists of a
BREAK and SYNC pattern followed by a PROTECTED IDENTIFIER. The identifier uniquely defines the purpose of the frame.
The slave task appointed for providing the response associated with the identifier transmits it. The response consists of a DATA
field and a CHECKSUM field.

Figure 25-2. Master and Slave Tasks Behavior in LIN Frame

The slave tasks waiting for the data associated with the identifier receives the response and uses the data transported after
verifying the checksum.

Figure 25-3. Structure of a LIN Frame

Master task

Master node

Slave task

Slave node
1

LIN bus

Slave task

Slave node
n

Slave task

HEADERMaster Task

Slave Task 1

Slave Task 2

RESPONSE

HEADER

RESPONSE

Field Field
SYNC

HEADER

FRAME SLOT

RESPONSE

Break Delimiter

BREAK
Field

PROTECTED
IDENTIFIER

Field
DATA 0

Field
DATA n CHECKSUM

Field

Inter Byte Space Inter Frame Space

Each byte field is transmitted as a serial byte, LSB first

Response Space
117Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.5.3 Data Transport

Two types of data may be transported in a frame; signals or diagnostic messages.
● Signals

Signals are scalar values or byte arrays that are packed into the data field of a frame. A signal is always present at the
same position in the data field for all frames with the same identifier.

● Diagnostic messages
Diagnostic messages are transported in frames with two reserved identifiers. The interpretation of the data field depends
on the data field itself as well as the state of the communicating nodes.

25.5.4 Schedule Table

The master task (in the master node) transmits frame headers based on a schedule table. The schedule table specifies the
identifiers for each header and the interval between the start of a frame and the start of the following frame. The master
application may use different schedule tables and select among them.

25.5.5 Compatibility with LIN 1.3

LIN 2.1 is a super-set of LIN 1.3.
A LIN 2.1 master node can handle clusters consisting of both LIN 1.3 slaves and/or LIN 2.1 slaves. The master will then avoid
requesting the new LIN 2.1 features from a LIN 1.3 slave:
● Enhanced checksum,
● Re-configuration and diagnostics,
● Automatic baud rate detection,
● "Response error" status monitoring.

LIN 2.1 slave nodes can not operate with a LIN 1.3 master node (e.g., the LIN1.3 master does not support the enhanced
checksum).
The LIN 2.1 physical layer is backwards compatible with the LIN1.3 physical layer. But not the other way around. The LIN 2.1
physical layer sets greater requirements, i.e. a master node using the LIN 2.1 physical layer can operate in a LIN 1.3 cluster.

25.6 LIN / UART Controller
The LIN/UART controller is divided in three main functions:
● Tx LIN Header function,
● Rx LIN Header function,
● LIN Response function.

These functions mainly use two services:
● Rx service,
● Tx service.

Because these two services are basically UART services, the controller is also able to switch into an UART function.

25.6.1 LIN Overview

The LIN/UART controller is designed to match as closely as possible to the LIN software application structure. The LIN software
application is developed as independent tasks, several slave tasks and one master task (c.f. Section 25.5.4 on page 118). The
Atmel® AVR MCU conforms to this perspective. The only link between the master task and the slave task will be at the cross-
over point where the interrupt routine is called once a new identifier is available. Thus, in a master node, housing both master
and slave task, the Tx LIN Header function will alert the slave task of an identifier presence. In the same way, in a slave node,
the Rx LIN Header function will alert the slave task of an identifier presence.
When the slave task is warned of an identifier presence, it has first to analyze it to know what to do with the response. Hardware
flags identify the presence of one of the specific identifiers from 60 (0x3C) up to 63 (0x3F).
118Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

For LIN communication, only four interrupts need to be managed:
● LIDOK: New LIN identifier available,
● LRXOK: LIN response received,
● LTXOK: LIN response transmitted,
● LERR: LIN Error(s).

The wake-up management can be automated using the UART wake-up capability and a node sending a minimum of 5 low bits
(0xF0) for LIN 2.1 and 8 low bits (0x80) for LIN 1.3. Pin change interrupt on LIN wake-up signal can be also used to exit the
device of one of its sleep modes.
Extended frame identifiers 62 (0x3E) and 63 (0x3F) are reserved to allow the embedding of user-defined message formats and
future LIN formats. The byte transfer mode offered by the UART will ensure the upwards compatibility of LIN slaves with
accommodation of the LIN protocol.

25.6.2 UART Overview
The LIN/UART controller can also function as a conventional UART. By default, the UART operates as a full duplex
controller. It has local loop back circuitry for test purposes. The UART has the ability to buffer one character for
transmit and two for receive. The receive buffer is made of one 8-bit serial register followed by one 8-bit indepen-
dent buffer register. Automatic flag management is implemented when the application puts or gets characters, thus
reducing the software overhead. Because transmit and receive services are independent, the user can save one
device pin when one of the two services is not used. The UART has an enhanced baud rate generator providing a
maximum error of 2% whatever the clock frequency and the targeted baud rate. The baud rate is given by:

25.6.3 LIN/UART Controller Structure

Figure 25-4. LIN/UART Controller Block Diagram

UART Baud Rate LIN/UART Clock Freqency
(LINBTR (LINDIV 1))+×
---=

Prescaler
clkI/O

RxD

Sample /bit BAUD_RATE

Get Byte

RX Frame Time out

Synchronization

Monitoring

Data FIFO

Put Byte

TX

Finite State Machine

FSM

BUFFER
119Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.6.4 LIN/UART Command Overview

Figure 25-5. LIN/UART Command Dependencies

Table 25-1. LIN/UART Command List
LENA LCMD[2] LCMD[1] LCMD[0] Command Comment

0 x x x Disable peripheral

1

0
0

0 Rx Header - LIN abort LIN withdrawal
1 Tx Header LCMD[2..0]=000 after Tx

1
0 Rx Response LCMD[2..0]=000 after Rx
1 Tx Response LCMD[2..0]=000 after Tx

1

0 0 Byte transfer
no CRC, no Time out

LTXDL=LRXDL=0
(LINDLR: read only register)

1 0 Rx Byte
0 1 Tx Byte
1 1 Full duplex

Rx Header
or

LIN Abort

Byte
Transfer

DISABLE
LIN

UART

Tx
Response

IDOK

Recommended
Way

TXOK

RXOK

Rx
Byte

Tx
Response

Tx
Byte

Tx
Header

Full
Duplex

Possible
Way

Automatic
Return
120Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.6.5 Enable/Disable

Setting the LENA bit in LINCR register enables the LIN/UART controller. To disable the LIN/UART controller, LENA bit must be
written to 0. No wait states are implemented, so, the disable command is taken into account immediately.

25.6.6 LIN Commands

Clearing the LCMD[2] bit in LINCR register enables LIN commands.
As shown in Table 25-1 on page 120, four functions controlled by the LCMD[1..0] bits of LINCR register are available (c.f. Figure
25-5 on page 120).

25.6.6.1Rx Header/LIN Abort Function

This function (or state) is mainly the withdrawal mode of the controller.
When the controller has to execute a master task, this state is the start point before enabling a Tx Header command.
When the controller has only to execute slave tasks, LIN header detection/acquisition is enabled as background function. At the
end of such an acquisition (Rx Header function), automatically the appropriate flags are set, and in LIN 1.3, the LINDLR register
is set with the uncoded length value.
This state is also the start point before enabling the Tx or the Rx Response command.
A running function (i.e. Tx Header, Tx or Rx Response) can be aborted by clearing LCMD[1..0] bits in LINCR register. In this
case, an abort flag - LABORT - in LINERR register will be set to inform the other software tasks. No wait states are
implemented, so, the abort command is taken into account immediately.
Rx Header function is responsible for:
● The BREAK field detection,
● The hardware re-synchronization analyzing the SYNCH field,
● The reception of the PROTECTED IDENTIFIER field, the parity control and the update of the LINDLR register in case of

LIN 1.3,
● The starting of the Frame_Time_Out,
● The checking of the LIN communication integrity.

25.6.6.2Tx Header Function

In accordance with the LIN protocol, only the master task must enable this function. The header is sent in the appropriate timed
slots at the programmed baud rate (c.f. LINBRR and LINBTR registers).
The controller is responsible for:
● The transmission of the BREAK field - 13 dominant bits,
● The transmission of the SYNCH field - character 0x55,
● The transmission of the PROTECTED IDENTIFIER field. It is the full content of the LINIDR register (automatic check bits

included).

At the end of this transmission, the controller automatically returns to Rx Header / LIN Abort state (i.e. LCMD[1..0] = 00) after
setting the appropriate flags. This function leaves the controller in the same setting as after the Rx Header function. This means
that, in LIN 1.3, the LINDLR register is set with the uncoded length value at the end of the Tx Header function.
During this function, the controller is also responsible for:
● The starting of the Frame_Time_Out,
● The checking of the LIN communication integrity.
121Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.6.6.3Rx and TX Response Functions

These functions are initiated by the slave task of a LIN node. They must be used after sending an header (master task) or after
receiving an header (considered as belonging to the slave task). When the TX Response order is sent, the transmission begins.
A Rx Response order can be sent up to the reception of the last serial bit of the first byte (before the stop-bit).
In LIN 1.3, the header slot configures the LINDLR register. In LIN 2.1, the user must configure the LINDLR register, either
LRXDL[3..0] for Rx Response either LTXDL[3..0] for Tx Response.
When the command starts, the controller checks the LIN13 bit of the LINCR register to apply the right rule for computing the
checksum. Checksum calculation over the DATA bytes and the PROTECTED IDENTIFIER byte is called enhanced checksum
and it is used for communication with LIN 2.1 slaves. Checksum calculation over the DATA bytes only is called classic
checksum and it is used for communication with LIN 1.3 slaves. Note that identifiers 60 (0x3C) to 63 (0x3F) shall always use
classic checksum.
At the end of this reception or transmission, the controller automatically returns to Rx Header / LIN Abort state (i.e. LCMD[1..0]
= 00) after setting the appropriate flags.
If an LIN error occurs, the reception or the transmission is stopped, the appropriate flags are set and the LIN bus is left to
recessive state.
During these functions, the controller is responsible for:
● The initialization of the checksum operator,
● The transmission or the reception of ‘n’ data with the update of the checksum calculation,
● The transmission or the checking of the CHECKSUM field,
● The checking of the Frame_Time_Out,
● The checking of the LIN communication integrity.

While the controller is sending or receiving a response, BREAK and SYNCH fields can be detected and the identifier of this new
header will be recorded. Of course, specific errors on the previous response will be maintained with this identifier reception.

25.6.6.4Handling Data of LIN response

A FIFO data buffer is used for data of the LIN response. After setting all parameters in the LINSEL register, repeated accesses
to the LINDAT register perform data read or data write (c.f. Section 25.7.13 “Data Management” on page 131).
Note that LRXDL[3..0] and LTXDL[3..0] are not linked to the data access.

25.6.7 UART Commands

Setting the LCMD[2] bit in LINENR register enables UART commands.
Tx Byte and Rx Byte services are independent as shown in Table 25-1 on page 120.
● Byte Transfer: the UART is selected but both Rx and Tx services are disabled,
● Rx Byte: only the Rx service is enable but Tx service is disabled,
● Tx Byte: only the Tx service is enable but Rx service is disabled,
● Full Duplex: the UART is selected and both Rx and Tx services are enabled.

This combination of services is controlled by the LCMD[1..0] bits of LINENR register (c.f. Figure 25-5 on page 120).

25.6.7.1Data Handling

The FIFO used for LIN communication is disabled during UART accesses. LRXDL[3..0] and LTXDL[3..0] values of LINDLR
register are then irrelevant. LINDAT register is then used as data register and LINSEL register is not relevant.
122Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.6.7.2Rx Service

Once this service is enabled, the user is warned of an in-coming character by the LRXOK flag of LINSIR register. Reading
LINDAT register automatically clears the flag and makes free the second stage of the buffer. If the user considers that the in-
coming character is irrelevant without reading it, he directly can clear the flag (see specific flag management described in
Section 25.8.2 on page 133).
The intrinsic structure of the Rx service offers a 2-byte buffer. The fist one is used for serial to parallel conversion, the second
one receives the result of the conversion. This second buffer byte is reached reading LINDAT register. If the 2-byte buffer is full,
a new in-coming character will overwrite the second one already recorded. An OVRERR error in LINERR register will then
accompany this character when read.
A FERR error in LINERR register will be set in case of framing error.

25.6.7.3Tx Service

If this service is enabled, the user sends a character by writing in LINDAT register. Automatically the LTXOK flag of
LINSIR register is cleared. It will rise at the end of the serial transmission. If no new character has to be sent, LTXOK flag can
be cleared separately (see specific flag management described in Section 25.8.2 on page 133).
There is no transmit buffering.
No error is detected by this service.

25.7 LIN / UART Description

25.7.1 Reset

The AVR core reset logic signal also resets the LIN/UART controller. Another form of reset exists, a software reset controlled by
LSWRES bit in LINCR register. This self-reset bit performs a partial reset as shown in Table 25-2.

25.7.2 LIN Protocol Selection

LIN13 bit in LINCR register is used to select the LIN protocol:
● LIN13 = 0 (default): LIN 2.1 protocol,
● LIN13 = 1: LIN 1.3 protocol.

The controller checks the LIN13 bit in computing the checksum (enhanced checksum in LIN2.1 / classic checksum in LIN 1.3).
This bit is irrelevant for UART commands.

Table 25-2. Reset of LIN/UART Registers
Register Name Reset Value LSWRES Value Comment

LIN Control Reg. LINCR 0000 0000 b 0000 0000 b

x=unknown

u=unchanged

LIN Status and Interrupt Reg. LINSIR 0000 0000 b 0000 0000 b
LIN Enable Interrupt Reg. LINENIR 0000 0000 b xxxx 0000 b

LIN Error Reg. LINERR 0000 0000 b 0000 0000 b
LIN Bit Timing Reg. LINBTR 0010 0000 b 0010 0000 b

LIN Baud Rate Reg. Low LINBRRL 0000 0000 b uuuu uuuu b
LIN Baud Rate Reg. High LINBRRH 0000 0000 b xxxx uuuu b

LIN Data Length Reg. LINDLR 0000 0000 b 0000 0000 b
LIN Identifier Reg. LINIDR 1000 0000 b 1000 0000 b

LIN Data Buffer Selection LINSEL 0000 0000 b xxxx 0000 b
LIN Data LINDAT 0000 0000 b 0000 0000 b
123Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.7.3 Configuration

Depending on the mode (LIN or UART), LCONF[1..0] bits of the LINCR register set the controller in the following configuration
(Table 25-3):

The LIN configuration is independent of the programmed LIN protocol.
The listening mode connects the internal Tx LIN and the internal Rx LIN together. In this mode, the TXLIN output pin is disabled
and the RXLIN input pin is always enabled. The same scheme is available in UART mode.

Figure 25-6. Listening Mode

25.7.4 Busy Signal

LBUSY bit flag in LINSIR register is the image of the BUSY signal. It is set and cleared by hardware. It signals that the controller
is busy with LIN or UART communication.

25.7.4.1Busy Signal in LIN Mode

Figure 25-7. Busy Signal in LIN Mode

Table 25-3. Configuration Table versus Mode
Mode LCONF[1..0] Configuration

LIN

00 b LIN standard configuration (default)
01 b No CRC field detection or transmission
10 b Frame_Time_Out disable
11 b Listening mode

UART

00 b 8-bit data, no parity and 1 stop-bit
01 b 8-bit data, even parity and 1 stop-bit
10 b 8-bit data, odd parity and 1 stop-bit
11 b Listening mode, 8-bit data, no parity and 1 stop-bit

0

1

internal

Tx LIN

internal

Rx LIN

LISTEN

RXLIN

TXLIN

Field Field
SYNC

Node providing the master task

Node providing a slave task

HEADER

LIN Bus

1) LBUSY

2) LBUSY

3) LBUSY

FRAME SLOT

RESPONSE

LCMD = Tx Header LIDOK LCMD = Tx or Rx Response LIDOK or LRXOK

BREAK
Field

PROTECTED
IDENTIFIER

Field
DATA 0

Field
DATA n CHECKSUM

Field

Node providing neither the master task, neither a slave task
124Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

When the busy signal is set, some registers are locked, user writing is not allowed:
● “LIN Control Register” - LINCR - except LCMD[2..0], LENA and LSWRES,
● “LIN Baud Rate Registers” - LINBRRL and LINBRRH,
● “LIN Data Length Register” - LINDLR,
● “LIN Identifier Register” - LINIDR,
● “LIN Data Register” - LINDAT.

If the busy signal is set, the only available commands are:
● LCMD[1..0] = 00 b, the abort command is taken into account at the end of the byte,
● LENA = 0 and/or LCMD[2] = 0, the kill command is taken into account immediately,
● LSWRES = 1, the reset command is taken into account immediately.

Note that, if another command is entered during busy signal, the new command is not validated and the LOVRERR bit flag of
the LINERR register is set. The on-going transfer is not interrupted.

25.7.4.2Busy Signal in UART Mode

During the byte transmission, the busy signal is set. This locks some registers from being written:
● “LIN Control Register” - LINCR - except LCMD[2..0], LENA and LSWRES,
● “LIN Data Register” - LINDAT.

The busy signal is not generated during a byte reception.

25.7.5 Bit Timing

25.7.5.1Baud rate Generator

The baud rate is defined to be the transfer rate in bits per second (bps):
● BAUD: Baud rate (in bps),
● fclki/o: System I/O clock frequency,
● LDIV[11..0]: Contents of LINBRRH and LINBRRL registers - (0-4095), the pre-scaler receives clki/o as input clock.
● LBT[5..0]: Least significant bits of - LINBTR register- (0-63) is the number of samplings in a LIN or UART bit (default

value 32).

Equation for calculating baud rate:
BAUD = fclki/o / LBT[5..0] x (LDIV[11..0] + 1)

Equation for setting LINDIV value:
LDIV[11..0] = (fclki/o / LBT[5..0] x BAUD) - 1

Note that in reception a majority vote on three samplings is made.

25.7.5.2Re-synchronization in LIN Mode

When waiting for Rx Header, LBT[5..0] = 32 in LINBTR register. The re-synchronization begins when the BREAK is detected. If
the BREAK size is not in the range (11 bits min., 28 bits max. — 13 bits nominal), the BREAK is refused. The re-synchronization
is done by adjusting LBT[5..0] value to the SYNCH field of the received header (0x55). Then the PROTECTED IDENTIFIER is
sampled using the new value of LBT[5..0]. The re-synchronization implemented in the controller tolerates a clock deviation of ±
20% and adjusts the baud rate in a ± 2% range.
The new LBT[5..0] value will be used up to the end of the response. Then, the LBT[5..0] will be reset to 32 for the next header.
125Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.7.5.3Handling LBT[5..0]

LDISR bit of LINBTR register is used to:
● Disable the re-synchronization (for instance in the case of LIN MASTER node),
● To enable the setting of LBT[5..0] (to manually adjust the baud rate especially in the case of UART mode). A minimum of

8 is required for LBT[5..0] due to the sampling operation.

Note that the LENA bit of LINCR register is important for this handling (see Figure 25-8 on page 126).

Figure 25-8. Handling LBT[5..0]

25.7.6 Data Length

Section 25.6.6 “LIN Commands” on page 121 describes how to set or how are automatically set the LRXDL[3..0] or LTXDL[3..0]
fields of LINDLR register before receiving or transmitting a response.
In the case of Tx Response the LRXDL[3..0] will be used by the hardware to count the number of bytes already successfully
sent.
In the case of Rx Response the LTXDL[3..0] will be used by the hardware to count the number of bytes already successfully
received.
If an error occurs, this information is useful to the programmer to recover the LIN messages.

25.7.6.1Data Length in LIN 2.1
● If LTXDL[3..0]=0 only the CHECKSUM will be sent,
● If LRXDL[3..0]=0 the first byte received will be interpreted as the CHECKSUM,
● If LTXDL[3..0] or LRXDL[3..0] >8, values will be forced to 8 after the command setting and before sending or receiving of

the first byte.

25.7.6.2Data Length in LIN 1.3
● LRXDL and LTXDL fields are both hardware updated before setting LIDOK by decoding the data length code contained

in the received PROTECTED IDENTIFIER (LRXDL = LTXDL).
● Via the above mechanism, a length of 0 or >8 is not possible.

LENA ?
(LINCR bit4)

LDISR
to write

= 1

= 1

= 0

= 0

Write in LINBTR register

LBT [5 to 0] forced to 0x20
LDISR forced to 0

Enable re-synch. in LIN mode

LBT [5 to 0] = LBT [5 to 0] to write
(LBT [5 to 0] min = 8)

LDISR forced to 1
Disable re-synch. in LIN mode
126Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.7.6.3Data Length in Rx Response

Figure 25-9. LIN2.1 - Rx Response - No Error

● The user initializes LRXDL field before setting the Rx Response command,
● After setting the Rx Response command, LTXDL is reset by hardware,
● LRXDL field will remain unchanged during Rx (during busy signal),
● LTXDL field will count the number of received bytes (during busy signal),
● If an error occurs, Rx stops, the corresponding error flag is set and LTXDL will give the number of received bytes without

error,
● If no error occurs, LRXOK is set after the reception of the CHECKSUM, LRXDL will be unchanged (and

LTXDL = LRXDL).

25.7.6.4Data Length in Tx Response

Figure 25-10.LIN1.3 - Tx Response - No Error

● The user initializes LTXDL field before setting the Tx Response command,
● After setting the Tx Response command, LRXDL is reset by hardware,
● LTXDL will remain unchanged during Tx (during busy signal),
● LRXDL will count the number of transmitted bytes (during busy signal),
● If an error occurs, Tx stops, the corresponding error flag is set and LRXDL will give the number of transmitted bytes

without error,
● If no error occurs, LTXOK is set after the transmission of the CHECKSUM, LTXDL will be unchanged (and

LRXDL = LTXDL).

DATA-0

LCMD = Rx Response LCMD2 to 0 = 000b

LINDLR = 0x?4

(*): LRXDL and LTXDL updated by user

4

? 0 1 2 3 4

LIDOK

LIN bus

LRXDL (*)

LTXDL (*)

LBUSY

1st Byte 2nd Byte 3rd Byte 4th Byte
LRXOK

DATA-1 DATA-2 DATA-3 CHECKSUM

DATA-0

LCMD = Tx Response
LCMD2 to 0 = 000b

(*): LRXDL and LTXDL updated by Rx Response or Tx Response task

4

4 0 1 2 3 4

LIDOK

LIN bus

LRXDL (*)

LTXDL (*)

LBUSY

1st Byte 2nd Byte 3rd Byte 4th Byte
LTXOK

DATA-1 DATA-2 DATA-3 CHECKSUM
127Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.7.6.5Data Length after Error

Figure 25-11.Tx Response - Error

Note: Information on response (ex: error on byte) is only available at the end of the serialization/de-serialization of the
byte.

25.7.6.6Data Length in UART Mode
● The UART mode forces LRXDL and LTXDL to 0 and disables the writing in LINDLR register,
● Note that after reset, LRXDL and LTXDL are also forced to 0.

25.7.7 xxOK Flags

There are three xxOK flags in LINSIR register:
● LIDOK: LIN IDentifier OK

It is set at the end of the header, either by the Tx Header function or by the Rx Header. In LIN 1.3, before generating
LIDOK, the controller updates the LRXDL and LTXDL fields in LINDLR register.
It is not driven in UART mode.

● LRXOK: LIN RX response complete
It is set at the end of the response by the Rx Response function in LIN mode and once a character is received in UART
mode.

● LTXOK: LIN TX response complete
It is set at the end of the response by the Tx Response function in LIN mode and once a character has been sent in
UART mode.

These flags can generate interrupts if the corresponding enable interrupt bit is set in the LINENIR register (see Section 25.7.11
“Interrupts” on page 130).

DATA-0

LCMD = Tx Response
LCMD2 to 0 = 000b

4

4 0 1 2

LIN bus

LRXDL

LTXDL

LBUSY

1st Byte 2nd Byte 3rd Byte
LERR

DATA-1 DATA-2

ERROR
128Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.7.8 xxERR Flags

LERR bit of the LINSIR register is an logical ‘OR’ of all the bits of LINERR register (see Section 25.7.11 “Interrupts” on page
130). There are eight flags:
● LBERR = LIN Bit ERRor.

A unit that is sending a bit on the bus also monitors the bus. A LIN bit error will be flagged when the bit value that is
monitored is different from the bit value that is sent. After detection of a LIN bit error the transmission is aborted.

● LCERR = LIN Checksum ERRor.
A LIN checksum error will be flagged if the inverted modulo-256 sum of all received data bytes (and the protected
identifier in LIN 2.1) added to the checksum does not result in 0xFF.

● LPERR = LIN Parity ERRor (identifier).
A LIN parity error in the IDENTIFIER field will be flagged if the value of the parity bits does not match with the identifier
value. (See LP[1:0] bits in Section 25.8.8 “LINIDR – LIN Identifier Register” on page 136). A LIN slave application does
not distinguish between corrupted parity bits and a corrupted identifier. The hardware does not undertake any correction.
However, the LIN slave application has to solve this as:
- known identifier (parity bits corrupted),
- or corrupted identifier to be ignored,
- or new identifier.

● LSERR = LIN Synchronization ERRor.
A LIN synchronization error will be flagged if a slave detects the edges of the SYNCH field outside the given tolerance.

● LFERR = LIN Framing ERRor.
A framing error will be flagged if dominant STOP bit is sampled.
Same function in UART mode.

● LTOERR = LIN Time Out ERRor.
A time-out error will be flagged if the MESSAGE frame is not fully completed within the maximum length T Frame_Maximum
by any slave task upon transmission of the SYNCH and IDENTIFIER fields (see Section 25.7.9 “Frame Time Out” on
page 129).

● LOVERR = LIN OVerrun ERRor.
Overrun error will be flagged if a new command (other than LIN Abort) is entered while ‘Busy signal’ is present.
In UART mode, an overrun error will be flagged if a received byte overwrites the byte stored in the serial input buffer.

● LABORT
LIN abort transfer reflects a previous LIN Abort command (LCMD[2..0] = 000) while ‘Busy signal’ is present.

After each LIN error, the LIN controller stops its previous activity and returns to its withdrawal mode (LCMD[2..0] = 000 b) as
illustrated in Figure 25-11 on page 128.
Writing 1 in LERR of LINSIR register resets LERR bit and all the bits of the LINERR register.

25.7.9 Frame Time Out

According to the LIN protocol, a frame time-out error is flagged if: T Frame > T Frame_Maximum. This feature is implemented in the
LIN/UART controller.

Figure 25-12.LIN Timing and Frame Time-out

Field Field
SYNC

T Header

T Header_Nominal

T Response_Nominal

T Frame_Nominal

=

=

=

34 x T Bit

10 (Number_of_Data + 1) x T Bit

T Header_ Nominal + T Response_Nominal

T Header_Maximum

T Response_Maximum

T Frame_Maximum

=

=

=

1.4 x T Header_Nominal

1.4 x T Response_Nominal

T Header_ Maximum + T Response_Maximum

T Frame

T Response

BREAK
Field

Nominal Maximum before Time-out

PROTECTED
IDENTIFIER

Field
DATA 0

Field
DATA n CHECKSUM

Field
129Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.7.10 Checksum

The last field of a frame is the checksum.
In LIN 2.1, the checksum contains the inverted eight bit sum with carry over all data bytes and the protected identifier. This
calculation is called enhanced checksum.

In LIN 1.3, the checksum contains the inverted eight bit sum with carry over all data bytes. This calculation is called classic
checksum.

Frame identifiers 60 (0x3C) to 61 (0x3D) shall always use classic checksum

25.7.11 Interrupts

As shown in Figure 25-13 on page 130, the four communication flags of the LINSIR register are combined to drive two
interrupts. Each of these flags have their respective enable interrupt bit in LINENIR register.
(see Section 25.7.7 “xxOK Flags” on page 128 and Section 25.7.8 “xxERR Flags” on page 129).

Figure 25-13.LIN Interrupt Mapping

CHECKSUM 255 unsigned char DATA n
0

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

PROTECTED ID.+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

unsigned char DATA n
0

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

PROTECTED ID.+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

8»
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=

CHECKSUM 255 unsigned char DATA n
0

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

unsigned char DATA n
0

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

8»
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=

LABORT

LTOERR

LOVERR

LFERR

LSERR

LPERR

LCERR

LBERR

LERR LIN ERR

LIN IT

LIDOK

LTXOK

LRXOK

LENERR

LINENIR.3 LINENIR.2 LINENIR.1 LINENIR.0

LENIDOK LENTXOK LENRXOK

LINSIR.3

LINSIR.2

LINERR.7

LINERR.6

LINERR.5

LINERR.4

LINERR.3

LINERR.2

LINERR.1

LINERR.0 LINSIR.1

LINSIR.0
130Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.7.12 Message Filtering

Message filtering based upon the whole identifier is not implemented. Only a status for frame headers having 0x3C, 0x3D, 0x3E
and 0x3F as identifier is available in the LINSIR register.

The LIN protocol says that a message with an identifier from 60 (0x3C) up to 63 (0x3F) uses a classic checksum (sum over the
data bytes only). Software will be responsible for switching correctly the LIN13 bit to provide/check this expected checksum (the
insertion of the ID field in the computation of the CRC is set - or not - just after entering the Rx or Tx Response command).

25.7.13 Data Management

25.7.13.1LIN FIFO Data Buffer

To preserve register allocation, the LIN data buffer is seen as a FIFO (with address pointer accessible). This FIFO is accessed
via the LINDX[2..0] field of LINSEL register through the LINDAT register.
LINDX[2..0], the data index, is the address pointer to the required data byte. The data byte can be read or written. The data
index is automatically incremented after each LINDAT access if the LAINC (active low) bit is cleared. A roll-over is implemented,
after data index=7 it is data index=0. Otherwise, if LAINC bit is set, the data index needs to be written (updated) before each
LINDAT access.
The first byte of a LIN frame is stored at the data index=0, the second one at the data index=1, and so on. Nevertheless,
LINSEL must be initialized by the user before use.

25.7.13.2UART Data Register

The LINDAT register is the data register (no buffering - no FIFO). In write access, LINDAT will be for data out and in read
access, LINDAT will be for data in.
In UART mode the LINSEL register is unused.

Table 25-4. Frame Status
LIDST[2..0] Frame Status

0xx b No specific identifier
100 b 60 (0x3C) identifier
101 b 61 (0x3D) identifier
110 b 62 (0x3E) identifier
111 b 63 (0x3F) identifier
131Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.8 LIN / UART Register Description

25.8.1 LINCR – LIN Control Register

● Bit 7 – LSWRES: Software Reset
● 0 = No action,
● 1 = Software reset (this bit is self-reset at the end of the reset procedure).

● Bit 6 – LIN13: LIN 1.3 mode
● 0 = LIN 2.1 (default),
● 1 = LIN 1.3.

● Bit 5:4 – LCONF[1:0]: Configuration
1. LIN mode (default = 00):

● 00 = LIN Standard configuration (listen mode “off”, CRC “on” and Frame_Time_Out “on”,
● 01 = No CRC, no Time out (listen mode “off”),
● 10 = No Frame_Time_Out (listen mode “off” and CRC “on”),
● 11 = Listening mode (CRC “on” and Frame_Time_Out “on”).

2. UART mode (default = 00):
● 00 = 8-bit, no parity (listen mode “off”),
● 01 = 8-bit, even parity (listen mode “off”),
● 10 = 8-bit, odd parity (listen mode “off”),
● 11 = Listening mode, 8-bit, no parity.

● Bit 3 – LENA: Enable
● 0 = Disable (both LIN and UART modes),
● 1 = Enable (both LIN and UART modes).

● Bit 2:0 – LCMD[2:0]: Command and mode
The command is only available if LENA is set.
● 000 = LIN Rx Header - LIN abort,
● 001 = LIN Tx Header,
● 010 = LIN Rx Response,
● 011 = LIN Tx Response,
● 100 = UART Rx and Tx Byte disable,
● 11x = UART Rx Byte enable,
● 1x1 = UART Tx Byte enable.

Bit 7 6 5 4 3 2 1 0
(0xC0) LSWRES LIN13 LCONF1 LCONF0 LENA LCMD2 LCMD1 LCMD0 LINCR
Read/Write R/W R/W R/W R/W R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
132Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.8.2 LINSIR – LIN Status and Interrupt Register

● Bits 7:5 – LIDST[2:0]: Identifier Status
● 0xx = no specific identifier,
● 100 = Identifier 60 (0x3C),
● 101 = Identifier 61 (0x3D),
● 110 = Identifier 62 (0x3E),
● 111 = Identifier 63 (0x3F).

● Bit 4 – LBUSY: Busy Signal
● 0 = Not busy,
● 1 = Busy (receiving or transmitting).

● Bit 3 – LERR: Error Interrupt
It is a logical OR of LINERR register bits. This bit generates an interrupt if its respective enable bit - LENERR - is set in
LINENIR.
● 0 = No error,
● 1 = An error has occurred.

The user clears this bit by writing 1 in order to reset this interrupt. Resetting LERR also resets all LINERR bits.
In UART mode, this bit is also cleared by reading LINDAT.

● Bit 2 – LIDOK: Identifier Interrupt
This bit generates an interrupt if its respective enable bit - LENIDOK - is set in LINENIR.
● 0 = No identifier,
● 1 = Slave task: Identifier present, master task: Tx Header complete.

The user clears this bit by writing 1, in order to reset this interrupt.
● Bit 1 – LTXOK: Transmit Performed Interrupt

This bit generates an interrupt if its respective enable bit - LENTXOK - is set in LINENIR.
● 0 = No Tx,
● 1 = Tx Response complete.

The user clears this bit by writing 1, in order to reset this interrupt.
In UART mode, this bit is also cleared by writing LINDAT.

● Bit 0 – LRXOK: Receive Performed Interrupt
This bit generates an interrupt if its respective enable bit - LENRXOK - is set in LINENIR.
● 0 = No Rx
● 1 = Rx Response complete.

The user clears this bit by writing 1, in order to reset this interrupt.
In UART mode, this bit is also cleared by reading LINDAT.

Bit 7 6 5 4 3 2 1 0
(0xC1) LIDST2 LIDST1 LIDST0 LBUSY LERR LIDOK LTXOK LRXOK LINSIR
Read/Write R R R R R/Wone R/Wone R/Wone R/Wone

Initial Value 0 0 0 0 0 0 0 0
133Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.8.3 LINENIR – LIN Enable Interrupt Register

● Bits 7:4 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written to zero when LINENIR
is written.

● Bit 3 – LENERR: Enable Error Interrupt
● 0 = Error interrupt masked,
● 1 = Error interrupt enabled.

● Bit 2 – LENIDOK: Enable Identifier Interrupt
● 0 = Identifier interrupt masked,
● 1 = Identifier interrupt enabled.

● Bit 1 – LENTXOK: Enable Transmit Performed Interrupt
● 0 = Transmit performed interrupt masked,
● 1 = Transmit performed interrupt enabled.

● Bit 0 – LENRXOK: Enable Receive Performed Interrupt
● 0 = Receive performed interrupt masked,
● 1 = Receive performed interrupt enabled.

25.8.4 LINERR – LIN Error Register

● Bit 7 – LABORT: Abort Flag
● 0 = No warning,
● 1 = LIN abort command occurred.

This bit is cleared when LERR bit in LINSIR is cleared.
● Bit 6 – LTOERR: Frame_Time_Out Error Flag

● 0 = No error,
● 1 = Frame_Time_Out error.

This bit is cleared when LERR bit in LINSIR is cleared.
● Bit 5 – LOVERR: Overrun Error Flag

● 0 = No error,
● 1 = Overrun error.

This bit is cleared when LERR bit in LINSIR is cleared.
● Bit 4 – LFERR: Framing Error Flag

● 0 = No error,
● 1 = Framing error.

This bit is cleared when LERR bit in LINSIR is cleared.

Bit 7 6 5 4 3 2 1 0
(0xC2) – – – – LENERR LENIDOK LENTXOK LENRXOK LINENIR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xC3) LABORT LTOERR LOVERR LFERR LSERR LPERR LCERR LBERR LINERR

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
134Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 3 – LSERR: Synchronization Error Flag
● 0 = No error,
● 1 = Synchronization error.

This bit is cleared when LERR bit in LINSIR is cleared.
● Bit 2 – LPERR: Parity Error Flag

● 0 = No error,
● 1 = Parity error.

This bit is cleared when LERR bit in LINSIR is cleared.
● Bit 1 – LCERR: Checksum Error Flag

● 0 = No error,
● 1 = Checksum error.

This bit is cleared when LERR bit in LINSIR is cleared.
● Bit 0 – LBERR: Bit Error Flag

● 0 = no error,
● 1 = Bit error.

This bit is cleared when LERR bit in LINSIR is cleared.

25.8.5 LINBTR – LIN Bit Timing Register

● Bit 7 – LDISR: Disable Bit Timing Resynchronization
● 0 = Bit timing re-synchronization enabled (default),
● 1 = Bit timing re-synchronization disabled.

● Bits 5:0 – LBT[5:0]: LIN Bit Timing
Gives the number of samples of a bit.
sample-time = (1 / fclki/o) x (LDIV[11..0] + 1)
Default value: LBT[6:0]=32 — Min. value: LBT[6:0]=8 — Max. value: LBT[6:0]=63

25.8.6 LINBRR – LIN Baud Rate Register

● Bits 15:12 – Reserved
These bits are reserved for future use. For compatibility with future devices, they must be written to zero when LINBRR is
written.

● Bits 11:0 – LDIV[11:0]: Scaling of clki/o Frequency
The LDIV value is used to scale the entering clki/o frequency to achieve appropriate LIN or UART baud rate.

Bit 7 6 5 4 3 2 1 0
(0xC4) LDISR – LBT5 LBT4 LBT3 LBT2 LBT1 LBT0 LINBTR
Read/Write R/W R R/(W) R/(W) R/(W) R/(W) R/(W) R/(W)
Initial Value 0 0 1 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
(0xC5) LDIV7 LDIV6 LDIV5 LDIV4 LDIV3 LDIV2 LDIV1 LDIV0 LINBRRL
(0xC6) – – – – LDIV11 LDIV10 LDIV9 LDIV8 LINBRRH
Bit 15 14 13 12 11 10 9 8
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
135Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.8.7 LINDLR – LIN Data Length Register

● Bits 7:4 – LTXDL[3:0]: LIN Transmit Data Length
In LIN mode, this field gives the number of bytes to be transmitted (clamped to 8 Max).
In UART mode this field is unused.

● Bits 3:0 – LRXDL[3:0]: LIN Receive Data Length
In LIN mode, this field gives the number of bytes to be received (clamped to 8 Max).
In UART mode this field is unused.

25.8.8 LINIDR – LIN Identifier Register

● Bits 7:6 – LP[1:0]: Parity
In LIN mode:
LP0 = LID4 ^ LID2 ^ LID1 ^ LID0
LP1 = ! (LID1 ^ LID3 ^ LID4 ^ LID5)

In UART mode this field is unused.
● Bits 5:4 – LDL[1:0]: LIN 1.3 Data Length

In LIN 1.3 mode:
● 00 = 2-byte response,
● 01 = 2-byte response,
● 10 = 4-byte response,
● 11 = 8-byte response.

In UART mode this field is unused.
● Bits 3:0 – LID[3:0]: LIN 1.3 Identifier

In LIN 1.3 mode: 4-bit identifier.
In UART mode this field is unused.

● Bits 5:0 – LID[5:0]: LIN 2.1 Identifier
In LIN 2.1 mode: 6-bit identifier (no length transported).
In UART mode this field is unused.

Bit 7 6 5 4 3 2 1 0
(0xC7) LTXDL3 LTXDL2 LTXDL1 LTXDL0 LRXDL3 LRXDL2 LRXDL1 LRXDL0 LINDLR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
(0xC8) LP1 LP0 LID5 / LDL1 LID4 / LDL0 LID3 LID2 LID1 LID0 LINIDR
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
136Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.8.9 LINSEL – LIN Data Buffer Selection Register

● Bits 7:4 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written to zero when LINSEL is
written.

● Bit 3 – LAINC: Auto Increment of Data Buffer Index
In LIN mode:
● 0 = Auto incrementation of FIFO data buffer index (default),
● 1 = No auto incrementation.

In UART mode this field is unused.
● Bits 2:0 – LINDX 2:0: FIFO LIN Data Buffer Index

In LIN mode: location (index) of the LIN response data byte into the FIFO data buffer. The FIFO data buffer is accessed
through LINDAT.
In UART mode this field is unused.

25.8.10 LINDAT – LIN Data Register

● Bits 7:0 – LDATA[7:0]: LIN Data In / Data out
In LIN mode: FIFO data buffer port.
In UART mode: data register (no data buffer - no FIFO).
● In Write access, data out.
● In Read access, data in.

Bit 7 6 5 4 3 2 1 0

(0xC9) – – – – LAINC LINDX2 LINDX1 LINDX0 LINSEL
Read/Write – – – – R/W R/W R/W R/W
Initial Value – – – – 0 0 0 0

Bit 7 6 5 4 3 2 1 0
(0xCA) LDATA7 LDATA6 LDATA5 LDATA4 LDATA3 LDATA2 LDATA1 LDATA0 LINDAT
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
137Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26. ADC - Analog to Digital Converter

26.1 Features
● Synchronous current and voltage ADC
● Configurable sample clock rate

● 512kHz PLL or 128kHz slow RC oscillator
● Cascaded decimation with programmable settings

● Instantaneous measurements with programmable output rate
● Accumulated measurements with programmable output rate

● Programmable Chopper Mode to cancel offset on both current and voltage measurements
● Programmable gain for current ADC
● 7 selectable input channels for voltage ADC
● Diagnosis Mode

26.2 Overview
The Atmel® AVR MCU contains two separate ADCs, a Current ADC (C-ADC) and a Voltage ADC (V-ADC). The C-ADC is
dedicated to measure current flowing through an external shunt resistor. The V-ADC is used to measure the battery terminal
voltage, external temperature sensor or internal temperature sensor. Note that it also has an additional input for test intended
for self diagnosis. An overview of the ADC system is illustrated in Figure 26-1 on page 139.
Both ADCs use Atmel's patented ADC architecture consisting of a Delta Sigma Modulator sampling the input, followed by 2
cascaded decimation filters which give both an Instantaneous Conversion result and an Accumulated Conversion result, trading
accuracy with faster data rate. Both filters have programmable decimation ratios to be able to select suitable data rates in
different operation modes. Decimation stage 1 outputs an Instantaneous Conversion result with data rate FIC. This result is
typically used for monitoring rapidly changing inputs with a shorter conversion time. Decimation stage 2 further accumulates the
Instantaneous Conversion result, giving a mean average of the input over a longer time period. The Accumulated Conversion
will output data with a low output data rate, FAC. Further accumulation of the data result should be performed in software.
When both ADCs are enabled, they will sample synchronously. The CPU can enable/disable either ADC whenever it is not
needed. To save power it is highly recommended that software disables the ADC whenever it is not used. To ensure
synchronous operation, both ADCs have a common ADC controller. The ADC controller contains IO registers for CPU
configuration and control. By writing to the ADC IO registers the CPU can enable/disable the ADC individually, configure the
conversion ratios and Chopper mode for the ADCs, select input channel for the V-ADC and configure the Gain and Regular
Current Detection mode for the C-ADC.
138Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 26-1. ADC Overview

Both the C-ADC and V-ADC include chopper functionality to automatically cancel offset. The chopper can be configured to run
automatically or it can be controlled directly by software. When running in automatic settings, the chopper will automatically
switch the input polarity on regular intervals and calculate a running average to remove the offset. The automatic chopping can
be configured to follow the Instantaneous Current or the Accumulated Conversion Complete.
To allow measurements on a wide range of current inputs, the C-ADC has programmable gain settings.
The C-ADC also includes a Regular Current Comparator. With the Regular Current Comparator the system can be configured
to enter a low power mode where it wakes up when current exceeds a configurable trigger level.
The V-ADC is connected to seven different sources through the Input Multiplexer. The PV2/NV2 pins are dedicated pins for
measuring the scaled battery terminal voltage. ADC0/1 are two general purpose inputs which can be configured for different
external configurations. In addition to the external channels there are two internal channels for internal temperature sensor
measurement and diagnosis function.

PV

NV

ADC0

SGND

DS-MOD

IRQ

Decimation Stage 1
w/Running average

ADC1

SGND

VTEMP

A
V

D
D

/3

V
R

E
F

DIAGNOSIS

ADC0

ADC1

DIAGNOSIS

(PA0)

(PA1)

(PA1)

(PA0)

(PA0)

(PA1)

Instantaneous Voltage
Registers

Accumulated Voltage
Registers

Instantaneous Current
Registers

Accumulated Current
Registers

Decimation Stage 2
w/Running average

IRQ

DS-MODGAIN

I
N
P
U
T

M
U
X

IRQ

Decimation Stage 1
w/Running average

Decimation Stage 2
w/Running average

ADC Control and Status

Regular Current
Comparator

IRQ IRQPI

NI
139Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.3 Operation

26.3.1 Delta Sigma Modulator

The Delta Sigma modulator will perform oversampling and quantization of the input signal and do noise shaping of the
quantization error.
The input for both the C-ADC and the V-ADC will be sampled at either the 512kHz PLL clock or the 128kHz Slow RC oscillator,
depending on CKSEL IO bit in Section 26.6.3 “ADCRA - ADC Control Register A” on page 151.
To avoid aliasing when sampling the input, the input needs to be band limited by an external filter. Due to the high oversampling
of the Delta Sigma Modulator a first order passive RC filter should be sufficient.
The ADCs use the VREF as reference voltage. For details on this voltage see Section 27. “Band Gap Reference and
Temperature Sensor” on page 161. The Voltage Reference, VREF, is used to create the internal quantization range for the
Delta Sigma modulator.
The V-ADC uses single ended sampling, and the internal quantization range is from GND to FSR,V-ADC. The V-ADC has no
internal gain for the external channels and will quantize the input relative to the Full-Scale Range, FSR,V-ADC.
The C-ADC uses differential signaling to be able to measure both charge and discharge currents. The internal signal range of
the Current ADC is -½FSR,C-ADC to ½FSR,C-ADC. The Current ADC has programmable gain and the input range depends on the
gain settings. For details on gain settings, see Section 26.3.3 “Programmable Gain” on page 141.
The figure below illustrates the FSR of the V-ADC and the C-ADC

Figure 26-2. Internal Signal Range with VREF = 1.1V

To ensure stable modulator operation, the input voltage/current should be limited to 90% of the modulator Full Scale Range
(FSR).
Note that if the input voltage exceeds the allowable input range (FSR), the conversion register will saturate. The conversion will
then give max or min values in the data registers.

26.3.2 Programmable Decimation Filters

The output of the Delta Sigma modulator contains a noise shaped, oversampled signal representing the input signal together
with both in and out-of band components. In order to remove the out-of band noise, the digital ADC contains 2 cascaded
decimation filters which will band limit the input with a low-pass filter before down-sampling the signal. The output of both filters
can be read by the software.

Figure 26-3. Decimation Filter

2N quantization levels

FSR, V-ADC = 1.1V

GND

2N quantization levels

½FSR, C-ADC = 0.66V

-½FSR, C-ADC = 0.66V

Digital Low
Pass Filter D1

ADIDES [1:0] ADADES [2:0]
Instantaneous Conversion Accumulated Conversion

Decimation Filter Stage 1

FICfS FACDigital Low
Pass Filter D2

Decimation Filter Stage 1
140Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Each filter has programmable decimation factors that can be adjusted by writing to the ADIDES[1:0] and ADADES[2:0] IO bits in
Section 26.6.5 “ADCRC - ADC Control Register C” on page 153. Figure 26-3 shows the decimation filter and their conversion
outputs. The first decimation filter will output an Instantaneous Data Conversion every 512, 256, 128 or 64 sampling cycle. The
second decimation filter will output an Accumulated Conversion Result every 512, 256, 128, 64, 32, 16, 8 or 4th Instantaneous
Conversion. The data output rate FIC and FAC for the Instantaneous and Accumulated Conversion output as a function of the
decimation settings is given in the equation below.

Note that when either Automatic Fast or Slow Chopping is enabled the data rate will be lower. For details on data rates when
chopping is enabled, see Section 26.3.4 “Programmable Chopper Control” on page 142.

26.3.3 Programmable Gain

The C-ADC has programmable input gain settings to be able to measure a wide range of current inputs. When a small current is
flowing the input can be scaled to fit the operation range of the ADC.
The input gain will adjust the signal at the input before it is sampled and quantized by the Delta Sigma modulator. The input gain
has 7 programmable gain levels which can be selected by software by writing to the CADG2:0 bits. 4x, 8x, 16x, 32x, 64x, 128x
or 256x can be selected.

Figure 26-4. Analog Gain Stage at Input

Note that the gain stage will saturate if the input exceeds the range of the modulator. The data result will then give max positive
or min negative values in the data registers.

FIC
FS

64 2ADIDES[1:0]×
---=

FAC
FIC

2ADIADES[2:0] 2+
---=

GAIN

CADG [2:0]

PI
VIN+

VIN-
NI

DS-MOD

½FSR, C-ADC

-½FSR, C-ADC
141Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.3.4 Programmable Chopper Control

Both the C-ADC and V-ADC have a chopper feature to cancel offset in the conversion data. The chopper can be configured by
writing to the ADCMS1:0 IO bits in the Section 26.6.3 “ADCRA - ADC Control Register A” on page 151. If enabled, the chopper
can be configured to run with in either
● Automatic Fast Chopper mode
● Automatic Slow Chopper mode
● Software Polarity Control mode

Figure 26-5 gives an overview of the chopper functionality.

Figure 26-5. Chopper Overview

If selecting the Automatic Fast Chopper mode the chopper will switch the polarity of the input on each Instantaneous
Conversion and calculate running averaging on the last two conversion results. In Automatic Fast Chopper mode the ADC will
automatically perform two settling conversions before using the 3rd Instantaneous Conversion for Running Average, hence the
Instantaneous Conversion data rate is reduced by 3x compared to having the Fast Chopper off. To get accurate Accumulation
Conversion result the settling conversions in the Instantaneous filter are not used by the second decimation filter stage; hence
the data rate in the Accumulated Conversion is also reduced by 3. The Fast Chopper timing is illustrated in Figure 26-6.

Figure 26-6. Fast Chopper Timing

Instantaneous Current
Registers

Accumulated Current
Registers

DS-MOD

Decimation Stage 1

0

1

Decimation
Filter

Running
Average

ADCMS = Automatic
Fast Chopper mode

ADCMS = Automatic
Slow Chopper mode

PI

NI

Decimation Stage 2

0

1

Decimation
Filter

Running
Average

CADCMS 1:0 01

Settling Settling Settling

Data1 (no chopper) Data3 (averaging)

Chopper
Polarity

Instantaneous
Conversion

Instantaneous
Conversion Complete
142Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

If selecting Automatic Slow Chopper mode the chopper will switch polarity on each Accumulated Conversion and calculate
running average on the last two conversion results. Note that when the chopper switches the polarity the Instantaneous filter will
need 2 settling samples, these settling samples are automatically discarded at the input of the Accumulation filter reducing the
data rate of the Accumulated Conversion with the time it takes to convert two Instantaneous Conversion values. The extra
conversion delay is illustrated in Figure 26-7.

Figure 26-7. Slow Chopper Timing

If selecting Software Polarity Control mode, the CPU can select the chopper polarity by writing to the ADPSEL bit. In this mode
software could change the polarity on regular intervals and do settling and running average in software. Note that the ADPSEL
bit will be synchronized together with other control settings to the ADC. For details on synchronization, see Section 26.4.1
“Synchronization of Configuration Settings” on page 146.
When enabling Automatic Chopper mode, the first result will take twice as long since an running average value has to be
calculated. This is also the case when changing between Automatic Fast and Slow Chopper mode.

Table 26-1. Data Rates for Instantaneous (IC) and Accumulated (AC) Conversion(1)(3)

Chopper mode Fic Fac

Auto fast chopper

Auto slow chopper(2)

No chopper

Notes: 1. Output sampling rate as function of decimation settings and input sampling rate, fS.
2. Settling of Instantaneous is handled in hardware. After the chopper polarity is switched, 2 CADIC result is auto-

matically discarded.
3. ICDEC represents the configured IC decimation ratio. ACDEC represents the configured AC decimation ratio.

CADCMS [1:0] 10

D2 (ADES 1:0) IC samples used by Accumulation filter

2 IC settling samples discarded by Accumulation filter

Chopper
Polarity

Accumulated
Conversion

Accumulated
Conversion IRQ

Instantaneous
Conversion IRQ

fS
3 ICDEC⋅

fS
3 ICDEC ACDEC⋅ ⋅
--

fS
ICDEC

fS
2 ICDEC⋅() ICDEC ACDEC⋅()+

fS
ICDEC

fS
ICDEC ACDEC⋅

143Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.3.5 Programmable Regulator Current Comparator

To be able to minimize CPU workload, the C-ADC can be configured to run with the Regular Current Comparator enabled.
Enabling this feature allows the CPU to wake up only when the current is higher than a programmable threshold for a
programmable number of samples.

Figure 26-8. Regulator Current Comparator

By writing to the Section 26.6.5 “ADCRC - ADC Control Register C” on page 153, Regular Current Comparator can either be
enabled or disabled, and the Regular Current Counter mode of operation and timeout can be selected. The value of the
comparator threshold can be configured by writing to the Section 26.6.10 “CADRCLH and CADRCLL - C-ADC Regulator
Current Comparator Threshold Level” on page 157. If enabled, the Regular Current Comparator will increment the Regular
Current Counter when the absolute value of the Accumulated Current measurement exceeds the programmable threshold level.
If the Accumulated Current measurement goes below the threshold, the counter will either reset or decrement depending on the
configuration. When the counter reaches the configured timeout level, the Regular Current Comparator can be configured to
give a Regular Current Detection interrupt to the CPU.
Figure 26-9 illustrates the Regular Current Comparator timing with the counter configured to reset when going below the
threshold level.

Figure 26-9. Regulator Current Timing with Counter Reset

CADRCM [1:0] CADAC [31:16]

Regular Current
Compare

RC Counter
IRQ

Regular Current Comparator

CADRCL [15:0] CADRCT [3:0]

0 01 2

No wakeup condition Wakeup condition

Current

3 4 5 6 7

CADRCEN = 0x1
CADRCT = 0xC

1 2 3 4 5 6 7 8 9 A B C

Regular Current IRQ

Comparator Threshold

Regular Current Count

Accumulated
Current Complete
144Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 26-10 illustrates the Regular Current Comparator timing with the counter configured to decrement when going below the
threshold level.

Figure 26-10.Regulator Current Timing with Counter Decrement

When the Regular Current Comparator has detected a Regular Current condition this will automatically reset the Regular
Current Counter. The Regular Current Counter will also reset if software changes configuration from reset to decrement or
decrement to reset mode.
If the CADAC conversion result is blocked by a read out busy, the Regular Current Comparator will not be affected.

26.3.6 Conversion Result

For the C-ADC the Current Flowing through the external shunt is given by the following equation.

For the V-ADC the following equations is used to calculate the external voltage.

In both expressions N is the number of data bits in the conversion word. The Instantaneous conversion result has 16 bits
resolution for both the C-ADC and the V-ADC while the Accumulated conversion has 18 bits for the C-ADC and 17 bits for the
V-ADC.

0 1 2

Wakeup condition

Current

3 4 5 6 7

CADRCEN = 0x2
CADRCT = 0xC

6 5 4 5 6 7 8 9 BA C

Regular Current IRQ

Comparator Threshold

Regular Current Count

Accumulated
Current Complete

Current |FSR|

Rshunt 2N-1 Input Gain××
--- Conversion Word×=

Voltage FSR

2N
---------- Conversion Word×=
145Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.4 Configuration and Usage

26.4.1 Synchronization of Configuration Settings

The ADCs operate in a different clock domain than the CPU. For safe synchronization and seamless configuration changes the
V-ADC and C-ADC have a common configuration controller. When the CPU writes new configuration data to the ADC, the data
are placed in temporary buffers. When all configuration changes have been written to the IO registers, the SCMD1:0 bits should
be written to execute the synchronization command. This will start the synchronization of data to the ADC domain. Depending
on command written the ADC will either:
● Update to new settings immediately
● Wait for the next Instantaneous Conversion before updating to new settings
● Wait for the next Accumulated Conversion before updating to new settings

While new configuration changes are being synchronized, the temporary buffers are locked for further writing until the data have
been synchronized to the ADC domain. During synchronization, the SBSY bit will stay high until synchronization is completed.
The CPU can therefore monitor the status of the synchronization by reading this bit.
The CPU/ADC synchronization is illustrated in Figure 26-11.

Figure 26-11.Synchronization of Configuration Settings

To ensure safe configuration changes, the following sequence should be used:
1. Check that the SBSY is low
2. Write new configuration settings (ADCSR, ADCRA, ADCRB, ADCRC, …)
3. Write SCMD1:0 to the preferred setting.

If both ADCs are disabled, they can be configured immediately without waiting for an Instantaneous or Accumulated conversion
complete. In this case, the synchronization will take place immediately regardless of what is written to the SCMD1:0 bits. Note
however that due to synchronization between the different clock domains, 2-3 ADC clock cycles are required before the actual
configuration takes place.
If doing an immediate update to new settings, the ADC will automatically reset before applying the new settings.
When software does a configuration change by sending a synchronization command that should do reconfiguration at either
next Instantaneous or Accumulated Conversion edge, the synchronization command register SCMD1:0 has to be written with a
time margin to the next Instantaneous or Accumulated Conversion edge. To guarantee that the reconfiguration is done at the
following edge, software has to write the command at least 35 ADC clock cycles before the next conversion edge is expected.
It software writes the command too late, the reconfiguration will not be updated until the next conversion edge.
Depending on usage and the conversion result used by software, different synchronization methods are recommended:
● When either Accumulated Conversion result or both the Instantaneous and the Accumulated conversions are used by

software, it is recommended to always synchronize configuration changes on the next Accumulated Conversion edge or
immediately.

● When only the Instantaneous Conversion result is used by software, it is recommended to always synchronize
configuration changes on the next Accumulated Conversion edge or immediately.

● When software enters or exit software polarity control mode it is recommended to synchronize configuration changes
immediately.

ADC configuration
(CPU buffer)

ADC Configuration control

ADC configuration
(ADC domain)

C-ADC

D
AT

A
 B

U
S

Synchronization

Commands

Synchronize Data

Synchronization

Status

V-ADC
146Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.4.2 Initialization and Settling Time

When the ADCs are enabled (both disabled in advance) an extra initialization time of 30-40 ADC cycles is required until the first
conversion is ready. The same initialization time is required when software executes an immediate configuration change
command.
When applying new changes the ADC will need to do settling conversions before an actual conversion is ready. If using
Automatic Fast/Slow Chopper mode, the settling will automatically be handled in hardware, in other cases the settling must be
handled by the software.
If not using Automatic Fast/Slow Chopper mode, settling should be handled in user software by discarding the first two
Instantaneous Conversions and the first Accumulation Conversion result after doing a configuration change that requires
settling.
For both ADCs, settling is required when enabling the ADC, after changing the decimation ratios, after changing the polarity of
the chopper, after changing the sampling clock source and after leaving Automatic Chopper mode configuration.
For the C-ADC, settling time is required when changing the input gain settings.
For the V-ADC, settling time is required when changing conversion channel.
The settling time is summarized in Table 26-2.

26.4.3 Sampling Clock

Software can select either the 512kHz PLL clock or the 128kHz Slow RC oscillator as sampling clock for the ADC by writing to
the CKSEL bit in Section 26.6.3 “ADCRA - ADC Control Register A” on page 151. When changing clock configuration this will
be synchronized in the same way as other configuration settings.
Note that if the PLL has been selected as ADC clock the PLL will keep running even if the CPU has entered sleep modes where
the PLL should be automatically disabled. Whenever going to deep sleep modes it is recommended to always use the Slow RC
oscillator as sampling clock. This allows the PLL to be automatically switched off which gives minimum power consumption.
If changing to the PLL clock source software should make sure that the PLL has locked to the target frequency before using the
conversion data.
When changing sampling clock on the next conversion, the clock change will take affect about 35 ADC clock cycles before the
corresponding interrupt is set. Note therefore that the conversion time of the ongoing conversions will be affected.

Table 26-2. Settling time for the Instantaneous (IC) and Accumulated (AC) Conversion

Chopper Mode TSETTLING,IC TSETTLING,AC

Auto Fast Chopper(1)

Auto Slow Chopper(2)

No chopper(3)

Notes: 1. The first Accumulated Conversion must be discarded in software.
2. The Instantaneous Conversion offset removal has to be performed in Software.
3. Settling should be performed in software when applying configuration changes that require settling.
4. Whenever doing configuration changes the recommended synchronization methods should be used. Other-

wise one extra settling conversion has to be added. For details on synchronization, see Section 26.4.1
“Synchronization of Configuration Settings” on page 146.

2
FIC
-------- 2

FAC

2
FIC
-------- 2

FAC

2
FIC
-------- 2

FAC

147Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.4.4 Interrupts

The two ADCs have five interrupt sources. Each interrupt source can be disabled individually. The interrupts are shown in the
figure below.

Figure 26-12.ADC Interrupts

Both the V-ADC and the C-ADC can be configured to issue an interrupt on each Instantaneous and Accumulated conversion. In
addition the C-ADC can be configured to issue an interrupt when a Regular Current Detection occurs.
When the C-ADC is configured to run in with the Regular Current Comparator enabled, the Instantaneous and Accumulated
conversion complete interrupts are still available. To avoid waking up whenever there is no Regular Current condition, the C-
ADC should have only the Regular Current Detection Interrupt enabled in this mode.

26.4.5 Configuring ADC1 and ADC0 for V-ADC Operation

When one of the ADC0 or ADC1 is used as analog input to the V-ADC, either ADC0 or ADC1 can be used as signal ground
(SGND). The use of ADC1 and ADC0 as SGND is efficient for the thermistor configuration shown in Figure 26-13. Both
thermistors, are connected through a common divider resistor to ADC0 and ADC1 respectively. Both ADC0 and ADC1 have
very high input impedance when used as ADC inputs, which makes it possible to connect two thermistors in the configuration
shown in Figure 26-13.
When measuring the ADC0/ADC1 channel in this configuration the ADC1/ADC0 is automatically switched to SGND.

Figure 26-13.Thermistor Configuration

In addition to the thermistor configuration in Figure 26-13, ADC0/ADC1 can also be configured to measure the pin voltage
without using the SGND configuration.
It is recommended to set the PA0DID and PA1DID bits to avoid high current consumption on the digital input buffer.
When measuring at ADC0, software should configure ADC0 as an input. When measuring at ADC1, software should configure
ADC1 as an input.

C-ADC

CADICIF
CADIC IRQ

CADAC IRQ

CADRC IRQ

CADICIE

CADACIF

CADACIE

CADRCIF

CADRCIE

V-ADC

VADICIF
VADIC IRQ

VADAC IRQ

VADICIE

VADACIF

VADACIE

VREF

ADC1/SGND

ADC0/SGND

VREFGND
148Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.4.6 Configuration Changes and Sleep Mode

To ensure the lowest power consumption in Power-down, it is recommended to disable both the CADC and the VADC by
clearing the CADEN and VADEN bits before entering sleep.
When configuring the ADC, the actual configuration will not be completed until synchronization has been completed. To ensure
correct operation it is not recommended to enter sleep until the synchronization has been completed and the SBSY bit in
Section 26.6.1 “ADSCSRA - ADC Synchronization Control and Status Register A” on page 149 is cleared

26.5 Diagnosis Mode
Both the V-ADC and the C-ADC features diagnosis capability.
The V-ADC has a separate diagnosis input channel to check that the Voltage Reference is within its range. The voltage on this
channel is VREF/2. When this channel is selected AVDD/3 should be selected as reference voltage. In addition the V-ADC has
pull-up functionality on the PV2 and NV2 pins that can be enabled to check for opens and shorts on these pins. The pull-up is
enabled by configuring the VADPDM[1:0] bits in ADCRE. Please note that this pull-up resistor is connected to VREF.
The C-ADC has a diagnosis input channel with a fixed input voltage of 3/40 × VREF that can be used to check the C-ADC. In
addition it feature pull-up functionality on the PI and NI pins that can be enabled to check for opens on these pins. The pull-up is
enabled by configuring the CADPDM[1:0] bits in ADCRD. Please note that this pull-up resistor is connected to VREF.

26.6 Register Description

26.6.1 ADSCSRA - ADC Synchronization Control and Status Register A

● Bit 7:3 - Reserved
These bits are reserved and will always read as zero.

● Bit 2 - SBSY: Synchronization Busy
This bit shows the status of the synchronization command from the CPU to the ADC domain. When this bit is set syn-
chronization is busy, and the configuration changes are pending. When this bit is cleared synchronization is ready and
the ADC is ready to be reconfigured.
When the SBSY is high software writing to the following ADC registers are blocked by hardware; ADSCSR, ADCRA,
ADCRB, ADCRC, ADCRD, ADCRE and CADRCLH and CARDRLL.

● Bit 1:0 - SCMD[1:0]: Synchronization Command
By writing to these bits a synchronization command is issued from the CPU domain to the ADC domain. The ADC will
update the new settings based on the synchronization command. Table 26-3 shows the synchronization commands from
the CPU to the ADC.
When writing to these bits while the SBSY bit is low, a synchronization command is issued and SBSY will go high. Any
writing to these bits while the SBSY bit is high will be ignored. When SBSY is high the ongoing command will be present
in the SCMD1:0 bits. When SBSY goes low the SCMD1:0 bits are automatically cleared.

Bit 7 6 5 4 3 2 1 0
(0xE0) – – – – – SBSY SCMD1 SCMD0 ADSCSRA
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 26-3. CPU Synchronization Commands

SCMD[1:0] Synchronization Command
00 No Synchronization
01 Reset and Synchronize
10 Synchronize on next Instantaneous Conversion
11 Synchronize on next Accumulated Conversion
149Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.2 ADSCSRB - ADC Synchronization Control and Status Register B

● Bit 7 - Reserved
This bit is reserved and will always read as zero.

● Bit 6 - VADICPS: V-ADC Instantaneous Conversion Polarity Status
When the Automatic Chopper is configured to run in Automatic Slow Chopping mode, this bit shows the polarity of the
conversion present in the V-ADC Instantaneous conversion registers, VADICL and VADICH. This bit should be read
before reading out the Instantaneous conversion result to ensure correct polarity information. In other modes this bit will
always read as zero. For details on chopping, see Section 26.3.4 “Programmable Chopper Control” on page 142.

● Bit 5 - VADACRB: VADAC Data Read Out Busy
This bit will be set when reading either the VADAC0, VADAC1 or VADAC2 data registers and cleared when reading the
VADAC3 data register. When the VADACRB bit is set it means that a data read out is busy and during this time V-ADC
Accumulated conversion registers are blocked for further update. If a read out is busy when a new V-ADC Accumulated
conversion value is ready, both the new conversion value and setting of the Interrupt Flag will be lost.

● Bit 4 - VADICRB: VADIC Data Busy Read
This bit will be set when reading the VADICL data register and cleared when reading the VADICH data register. When
the VADICRB bit is set it means that a data read out is busy and during this time V-ADC Instantaneous Voltage registers
are blocked for further update. If a read out is busy when a new V-ADC Instantaneous conversion value is ready, both
the new conversion value and setting of the Interrupt Flag will be lost.

● Bit 3 - Reserved
This bit is reserved bits and will always read as zero.

● Bit 2 - CADICPS: C-ADC Instantaneous Conversion Polarity Status
When the Automatic Chopper is configured to run in Automatic Slow Chopping mode, this bit shows the polarity of the
conversion present in the C-ADC Instantaneous conversion registers, CADICL and CADICH. This bit should be read
before reading out the Instantaneous conversion result to ensure correct polarity information. In other modes this bit will
always read as zero. For details on chopping, see Section 26.3.4 “Programmable Chopper Control” on page 142.

● Bit 1 - CADACRB: CADAC Data Read Out Busy
This bit will be set when reading either the CADAC0, CADAC1 or CADAC2 data registers and cleared when reading the
CADAC3 data register. When the CADACRB bit is set it means that a data read out is busy and during this time C-ADC
Accumulate conversion registers are blocked for further update. If a read out is busy when a new C-ADC Accumulated
conversion value is ready, both the new conversion value and setting of the Interrupt Flag will be lost.

● Bit 0 - CADICRB: CADIC Data Read Out Busy
This bit will be set when reading the CADICL data register and cleared when reading the CADICH data register. When
the CADICRB bit is set it means that a data read out is busy and during this time C-ADC Instantaneous conversion regis-
ters are blocked for further update. If a read out is busy when a new C-ADC Instantaneous Current value is ready, both
the new conversion value and setting of the Interrupt Flag will be lost.

Bit 7 6 5 4 3 2 1 0
(0xE1) – VADICPS VADACRB VADICRB – CADICPS CADACRB CADICRB ADSCSRB
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
150Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.3 ADCRA - ADC Control Register A

● Bit 7:4 - Reserved
Theser bits are reserved and will always read as zero.

● Bit 4 - ADPSEL: ADC Polarity Select
This bit is used to control the polarity when running Software Polarity Control operation. To write this bit to '1', the
ADCMS1:0 bits have to be written to '11' at the same time, otherwise this bit will not be set.

● Bit 2:1 - ADCMS[1:0]: C-ADC Chopper Mode Select
These bits are used to configure the chopper for the ADCs according to Table 26-4.

● Bit 0 - CKSEL: Sampling Clock Select

This bit selects the sampling clock for both ADCs. By writing this bit to one the Slow RC oscillator will be used as sampling
clock. Table 26-5 shows the sampling clock selection for the ADC.
Note that to avoid getting wrong data result by changing the clock in the middle of a conversion, ADC clock changing is
synchronized along with other configuration changes.

Bit 7 6 5 4 3 2 1 0
(0xE2) – – – – ADPSEL ADCMS[1:0] CKSEL ADCRA
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 26-4. Chopper Mode Selection
ADCMS[1:0] Chopper Mode Select

00 Chopping disabled
01 Automatic Fast Chopping
10 Automatic Slow Chopping
11 Software Polarity Control

Table 26-5. Sampling Clock Selection
CKSEL ADC Clock Source

0 PLL (512kHz output) as sampling clock
1 Slow RC Oscillator as sampling clock
151Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.4 ADCRB - ADC Control Register B

● Bit 7:5 - Reserved
Theser bits are reserved and will always read as zero.

● Bit 4:3 - ADIDES[1:0]: Instantaneous Decimation Ratio Select
These bits determine the Decimation Ratio for the Instantaneous Conversion output. The same settings apply for both
the C-ADC and the V-ADC.

● Bit 2:0 - ADADES[2:0]: Accumulated Decimation Ratio Select
These bits determine the Decimation Ratio for the Accumulated Conversion output. The same settings apply for both the
C-ADC and the V-ADC.

Bit 7 6 5 4 3 2 1 0
(0xE3) – – ADIDES[1:0] ADADES[2:0] ADCRB
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 26-6. Instantaneous Decimation Ratios
ADIDES[1:0] Instantaneous Decimation Ratio

00 512
01 256
10 128
11 64

Table 26-7. Accumulated Decimation Ratios
ADADES[2:0] Accumulated Decimation Ratio

000 512
001 256
010 128
011 64
100 32
101 16
110 8
111 4
152Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.5 ADCRC - ADC Control Register C

● Bit 7 - CADEN: C-ADC Enable
This bit is used to enable the C-ADC. When this bit is set to one the C-ADC will be enabled. When clearing this bit the C-
ADC will be disabled.

● Bit 6 - Reserved
This bit is reserved and will always read as zero.

● Bit 5:4 - CADRCM[1:0]: C-ADC Regular Current Comparator Mode
These bits are used to enable the Regular Current Comparator and to configure the Regular Current Counter.

● Bit 7-4 - CADRCT[3:0]: C-ADC Regular Current Count Threshold
These bits determine number of Accumulated Current measurements that must be above the Regular Current Threshold
Level before a Regular Current Condition occurs.

Bit 7 6 5 4 3 2 1 0
(0xE4) CADEN – CADRCM[1:0] CADRCT[3:0] ADCRC
Read/Write R/W R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 26-8. Regular Current Comparator Mode
CADRCM[1:0] Regular Current Comparator Mode

00 Comparator Disabled

01
Comparator Enabled.
The Regular Current Counter counts up if Accumulated Current measurement is above threshold
and it is reset if the Accumulated Current goes below threshold.

10
Comparator enabled.
The Regular Current Counter counts up if Accumulated Current measurement is above threshold
and down towards 0 if Accumulated Current goes below threshold.

11 Reserved

Table 26-9. Regular Current Count Threshold
CADRCT[3:0] Number of sample above threshold

0000 1
0001 2
0010 3

... ...
1111 16
153Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.6 ADCRD - ADC Control Register D

● Bits 7:6 - Reserved
These bits are reserved and will always read as zero.

● Bit 5:3 - CADG[2:0]: C-ADC Gain
These bits determine the gain in the analog input stage of the C-ADC according to Table 26-10.

● Bit 2:1 - CADPDM[1:0]: C-ADC Pin Diagnostics Mode
These bits are used to enable diagnosis pull-up voltages for hence the PI and NI input pins of the C-ADC according to
Table 26-11.

● Bit 0 - CADDSEL: C-ADC Diagnosis Channel Select
When this bit is set, the C-ADC will select a diagnosis voltage input corresponding to 3/40VREF. When using this chan-
nel the C-ADC gain, CADG[1:0] bits, should be configured with 4x setting. When this bit is cleared the PI and NI will be
used as inputs for the C-ADC.

Bit 7 6 5 4 3 2 1 0
(0xE5) – – CADG[2:0] CADPDM[1:0] CADDSEL ADCRD
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 26-10. Input Gain
CADG[2:0] Input Gain

000 4x
001 8x
010 16x
011 32x
100 64x
101 128x
110 256x
111 Reserved

Table 26-11. Pin Diagnosis Mode
CADPDM[1:0] Description

00 Pull-up disabled
01 Pull-up on PI pin enabled
10 Pull-up on NI pin enabled
11 Pull-up on both PI/NI pins enabled
154Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.7 ADCRE - ADC Control Register E

● Bit 7 - VADEN: V-ADC Enable
This bit is used to enable the V-ADC. When this bit is set to one the V-ADC will be enabled. When clearing this bit the V-
ADC will be disabled .

● Bit 6 - Reserved
This bit is reserved and is always read as zero.

● Bit 5 - VADREFS: V-ADC Reference Select
This bit is used to select the Reference Voltage for the V-ADC according to Table 26-12.

● Bit 4:3 - VADPDM[1:0]: V-ADC Pin Diagnostics Mode

These bits are used to enable diagnosis pull-up voltages for hence the PV2 and NV2 input pins of the V-ADC according to Table
26-13.

● Bit 2:0 - VAMUX[2:0]: V-ADC Channel Selection Bits

This VAMUX bits determine the V-ADC channel selection according to Table 26-14.

Bit 7 6 5 4 3 2 1 0
(0xE6) VADEN – VADREFS VADPDM[1:0] VAMUX[2:0] ADCRE
Read/Write R/W R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 26-12. V-ADC Reference Select
VADREFS Description

0 VREF as reference
1 AVDD/3 as reference (for diagnosis purpose)

Table 26-13. Pin Diagnosis Mode
VADPDM[1:0] Description

00 Pull-up disabled
01 Pull-up on PV2 pin enabled
10 Pull-up on NV2 pin enabled
11 Pull-up on both PV2/NV2 pins enabled

Table 26-14. V-ADC Channel Selection
VAMUX[2:0] Channel Selected

000 PV2 - NV2
001 ADC0 - SGND(1)

010 ADC1 - SGND(2)

011 VTEMP - GND
100 DIAGNOSIS (VREF/2) - GND
101 ADC0 - GND
110 ADC1 - GND
111 Reserved

Notes: 1. ADC1 will automatically be configured as SGND.
2. ADC0 will automatically be configured as SGND.
155Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.8 ADIFR - ADC Interrupt Flag Register

● Bits 7:6 - Reserved
These bits are reserved and will always read as zero.

● Bit 5 - VADACIF: Accumulated Conversion Interrupt Flag
This bit is set when the V-ADC completes an Accumulated Conversion and the V-ADC Accumulated Conversion regis-
ters are updated. The V-ADC Accumulated Conversion Complete Interrupt is executed if the VADACIE bit and the I-bit in
SREG is set. VADACIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
VADACIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on ADIFR, a pending
interrupt can be lost.

● Bit 4 - VADICIF: Instantaneous Conversion Interrupt Flag
This bit is set when the V-ADC completes an Instantaneous Conversion and the V-ADC Instantaneous Conversion regis-
ters are updated. The V-ADC Instantaneous Conversion Complete Interrupt is executed if the VADICIE bit and the I-bit in
SREG is set. VADICIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
VADICIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on ADIFR, a pending
interrupt can be lost.

● Bit 3 - Reserved
This bit is reserved and will always read as zero.

● Bit 2 - CADRCIF: Regulator Current Interrupt Flag
This bit is set when a C-ADC has detected that a Regular Current Condition has occurred. The C-ADC Regular Current
Interrupt is executed if the CADRCIE bit and the I-bit in SREG is set. CADRCIF is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, CADRCIF is cleared by writing a logical one to the flag.
Beware that if doing a Read-Modify-Write on ADIFR, a pending interrupt can be lost.

● Bit 1 - CADACIF: Accumulated Conversion Interrupt Flag
This bit is set when the C-ADC completes an Accumulated Conversion and the C-ADC Accumulated Conversion regis-
ters are updated. The C-ADC Accumulated Conversion Complete Interrupt is executed if the CADACIE bit and the I-bit in
SREG is set. CADACIF is cleared by hardware when executing the corresponding interrupt handling vector. Alterna-
tively, CADACIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on ADIFR, a
pending interrupt can be lost.

● Bit 0 - CADICIF: Instantaneous Conversion Interrupt Flag
This bit is set when a C-ADC completes an Instantaneous Conversion and the C-ADC Instantaneous Conversion regis-
ters are updated. The C-ADC Instantaneous Conversion Complete Interrupt is executed if the CADICIE bit and the I-bit in
SREG is set. CADICIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
CADICIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on ADIFR, a pending
interrupt can be lost.

Bit 7 6 5 4 3 2 1 0
(0xE7) – – VADACIF VADICIF – CADRCIF CADACIF CADICIF ADIER
Read/Write R R R/W R/W R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
156Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.9 ADIMR - ADC Interrupt Mask Register

● Bit 7:6 - Reserved
These bits are reserved and will always read as zero.

● Bit 5 - VADACIE: Accumulated Conversion Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the V-ADC Accumulate Conversion Complete Interrupt is
activated.

● Bit 4 - VADICIE: Instantaneous Conversion Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the V-ADC Instantaneous Conversion Complete Interrupt is
activated.

● Bit 3 - Reserved
This bit is reserved and will always read as zero.

● Bit 2 - CADRCIE: Regular Current Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the C-ADC Regular Current Detection Interrupt is activated.

● Bit 1 - CADACIE: Accumulated Conversion Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the C-ADC Accumulated Conversion Complete Interrupt is
activated.

● Bit 0 - CADICIE: Instantaneous Conversion Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the C-ADC Instantaneous Conversion Complete Interrupt is
activated.

26.6.10 CADRCLH and CADRCLL - C-ADC Regulator Current Comparator Threshold Level

● Bit 15:0 - CADRCL[15:0]: C-ADC Regulator Current Threshold Level
The C-ADC Regular Current Comparator Threshold registers, CADRCLH and CADRCLL determine the threshold level
for the Regular Current Comparator detection. The value is in unsigned format and bit 15 will always read zero.

Bit 7 6 5 4 3 2 1 0
(0xE8) – – VADACIE VADICIE – CADRCIE CADACIE CADICIE ADIMR
Read/Write R R R/W R/W R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
(0xEA) CADRCL[15:8] CADRCLH
(0xE9) CADRCL[7:0] CADRCLL

7 6 5 4 3 2 1 0
Read/Write R R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
157Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.11 VADICH and VADICL - V-ADC Instantaneous Conversion Result

When a V-ADC Instantaneous Conversion is complete, the result is found in these two registers. The VADICH and VADICL
contain the Instantaneous Voltage measurements in unsigned format.
When VADICL is read, the V-ADC Instantaneous Conversion register is not updated until VADICH is read. During a read of the
data values the VADIC Read Out Busy Flag, VADICRB in Section 26.6.2 “ADSCSRB - ADC Synchronization Control and Status
Register B” on page 150 will be high. Reading the registers in the sequence VADICL, VADICH will ensure that consistent values
are read. When a conversion is completed, both registers must be read before the next conversion is completed, otherwise data
will be lost.

26.6.12 VADAC3, VADAC2, VADAC1 and VADAC0 - V-ADC Accumulated Conversion Result

When a V-ADC Accumulated Conversion is complete, the result is found in these four registers. The VADAC3, VADAC2,
VADAC1 and VADAC0 registers contain the Accumulate Voltage measurements in unsigned format. Bits 31:15 are the 17-bit
ADC result, while bits 14:0 will read all zeros.
When VADAC0, VADAC1 or VADAC2 is read, the V-ADC Accumulated Conversion register is not updated until VADAC3 is
read. During a read of the data values the VADAC Read Out Busy Flag, VADACRB in ADSCSRB - ADC Synchronization
Control and Status Register B will be high. Reading the registers in the sequence VADAC0, VADAC1, VADAC2, VADAC3 will
ensure that consistent values are read. When a conversion is completed, all registers must be read before the next conversion
is completed, otherwise data will be lost.

Bit 15 14 13 12 11 10 9 8
(0xF2) VADICH[15:8] VADICH
(0xF1) VADICL[7:0] VADICL

7 6 5 4 3 2 1 0
Read/Write R R R R R R R R

R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

(0xF6) VADAC3[31:24] VADAC3
(0xF5) VADAC2[23:16] VADAC2
(0xF4) VADAC1[15:8] VADAC1
(0xF3) VADAC0[7:0] VADAC0
Read/Write R R R R R R R R

R R R R R R R R
R R R R R R R R
R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
158Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.13 CADICH and CADICL - C-ADC Instantaneous Conversion Result

When a C-ADC Instantaneous Conversion is complete, the result is found in these two registers. The CADICH and CADICL
contain the Instantaneous Current measurements in 2's complement format. When CADICL is read, the C-ADC Instantaneous
Conversion register is not updated until CADICH is read. During a read of the data values the CADIC Read Out Busy Flag,
CADICRB in Section 26.6.2 “ADSCSRB - ADC Synchronization Control and Status Register B” on page 150 will be high.
Reading the registers in the sequence CADICL, CADICH will ensure that consistent values are read. When a conversion is
completed, both registers must be read before the next conversion is completed, otherwise data will be lost.

26.6.14 CADAC3, CADAC2, CADAC1 and CADAC0 - C-ADC Accumulated Conversion Result

When a C-ADC Accumulated Conversion is complete, the result is found in these four registers. The CADAC3, CADAC2,
CADAC1 and CADAC0 Registers contain the Accumulate Current measurements in 2's complement format. Bits 31:14 are the
18-bit ADC result (including sign), while bit 13:0 will read all zeros for positive results and all ones for negative results.
When CADAC0, CADAC1 or CADAC2 is read, the C-ADC Accumulated Conversion register is not updated until CADAC3 is
read. During a read of the data values the CADAC Read Out Busy Flag, CADACRB in Section 26.6.2 “ADSCSRB - ADC
Synchronization Control and Status Register B” on page 150 will be high. Reading the registers in the sequence CADAC0,
CADAC1, CADAC2, CADAC3 will ensure that consistent values are read. When a conversion is completed, all registers must
be read before the next conversion is completed, otherwise data will be lost.

Bit 15 14 13 12 11 10 9 8
(0xEC) CADICH[15:8] CADICH
(0xEB) CADICL[7:0] CADICL

7 6 5 4 3 2 1 0
Read/Write R R R R R R R R

R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

(0xF0) CADAC3[31:24] CADAC3
(0xEF) CADAC2[23:16] CADAC2
(0xEE) CADAC1[15:8] CADAC1
(0xED) CADAC0[7:0] CADAC0
Read/Write R R R R R R R R

R R R R R R R R
R R R R R R R R
R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
159Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.6.15 DIDR0 – Digital Input Disable Register 0

● Bit 7:2 - Reserved
These bits are reserved and is always read as zero.

● Bit 1:0 - PA1DID:PA0DID
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is disabled. The corresponding
PIN Register bit will always read as zero when this bit is set. When an analog signal is applied to the PA1DID:PA0DID
pin and the digital input from this pin is not needed, this bit should be written logic one to reduce power consumption in
the digital input buffer.

Bit 7 6 5 4 3 2 1 0
(0x7E) – – – – – – PA1DID PA0DID DIDR0
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0
160Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

27. Band Gap Reference and Temperature Sensor

27.1 Features
● Accurate voltage reference of 1.100V
● Internal temperature sensor
● Curvature compensation to cancel higher order temperature dependence
● Lock register for locking parameter and control registers
● External decoupling for optimum noise performance
● Low Power Consumption Mode in Power-down Sleep Mode

27.2 Overview
A low power band-gap reference provides Atmel® AVR MCU with a highly accurate on-chip voltage reference VREF of 1.100V.
This reference voltage is used as reference for the V-ADC, C-ADC and Brown-out Detector. The reference to the ADCs uses a
buffer with external decoupling capacitor to enable excellent noise performance with minimum power consumption.
The reference voltage VREF_P/VREF_N to the C-ADC is scaled to match the full-scale requirement at the current sense input pins.
This configuration also enables concurrent operation of both V-ADC and C-ADC.
To guarantee ultra low temperature drift after factory calibration, the Atmel AVR MCU features a two-step calibration algorithm.
The calibration steps are performed at 25°C and 125°C. The result is stored in the signature row. Temperature drift after this
calibration is guaranteed by design and characterization to be less than 20 ppm/°C from -40°C to 125°C.
The Atmel AVR MCU has an on-chip temperature sensor for monitoring the die temperature. A voltage Complementary-To-
Absolute-Temperature, VCTAT, is generated in the voltage reference circuit and connected to the multiplexer at the V-ADC input.
This temperature sensor can be used for runtime compensation of temperature drift in both the voltage reference and the On-
chip Oscillator. To get the absolute temperature in degrees Kelvin, the measured VCTAT voltage must be scaled with the VCTAT
factory calibration values, VTEMPSLOPE and VTEMPBASE, stored in the signature row.

27.3 VTEMPBASE and VTEMPSLOPE

VTEMPBASE is an unsigned 16-bit value. It gives the VADC reading for Vtemp(T0) for the ADC-conversion used when finding
actual temperature.
VTEMPSLOPE is a signed 8 bit value. It is 4-times the deviation from the typical slope of –96LSB/K. VTEMPSLOPE_hot should be
used for temperatures above 25°C, while VTEMPSLOPE_cold should be used for temperatures below 25°C. If the ADC reading is
below VTEMPBASE use VTEMPSLOPE_hot, and if the ADC reading is above VTEMPBASE use VTEMPSLOPE_cold.
When using these values to find actual temperature, use the following formula:

ADCVTEMP is the raw ADC reading then measuring the VTEMP channel. TEMPBASE is assumed to be 25°C giving:

See Section 29.8.9 “Reading the Signature Row from Software” on page 173 for details.

Temp 1
VTEMPSLOPE

4
---------------------------------- 96–

--- ADCVTEMP VTEMPBASE–() TEMPBASE+=

Temp[K] 1
VTEMPSLOPE

4
---------------------------------- LSB

K
----------- 96 LSB

K
-----------–

--- ADCVTEMP LSB[] VTEMPBASE LSB[]–() 298.15 K[]+=
161Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 27-1. Reference Circuitry

27.4 Band Gap Sample Mode
The Band Gap module has two operation modes, continuous mode and sampled mode. When the Band Gap module is run in
sampled mode, the Band Gap core and output buffer are switched on and off at regular time intervals. When the Band Gap core
and output buffer are off, the reference voltage is stored on the external capacitor. In continuous mode, the core and output
buffer are switched on all the time. The sampled mode is enabled automatically in Power Down sleep mode. In all other
operating modes, the continuous mode is used.
The timing of the signals in sampled mode is shown in Figure 27-2. The BGSC bits in the BGCSRA register control the timing
of t_off. For the timing of BG_CORE_EN and BG_BUF_EN also see Section 31. “Electrical Characteristics AVR MCU” on page
192ff.

Figure 27-2. Band Gap Timing

The timing of the sampled mode is dependent on the leakage current from the external capacitor storing the VREF voltage
during the off period. For instance a ceramic capacitor of 1 µF may have an insulation resistance of ~500M , while a tantalum
capacitor of 1 µF may have an insulation resistance of ~1M . The maximum off period is given by:

where CREF and Rins are the capacitance and the insulation resistance of the external decoupling capacitor, VREF is the
bandgap output voltage and is the maximum allowed variation in VREF. As the Brown-out Detector is the only module
using the Voltage Reference in Power Down the maximum acceptable degradation of the BOD level in Power-down is the
deciding factor when setting VREF. Setting ΔVREF to 15.5mV gives t_off < 7s for a ceramic capacitor and t_off < 14 ms for a
tantalum capacitor. Timeout settings longer than t_off will violate the VREF requirement used in this example.

BG Control and
Status Register A

BG State Machine

BG Interface

1.1V

VPTAT VREF_P

VREF

VREF_N

VREF_GND

BG_Core_EN

BG_BUF_EN

BFG Reference
(Core)

BG Calibration
Registers

8-
bi

t D
at

a
B

us

BG_SAMPLE_MODE

BG_CORE_EN

BG_BUF_EN

t_startup t_startup

t_period

t_on

t_off

t_off
CREF Δ× VREF Rins×

VREF
--<

ΔVREF
162Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

27.5 Register Description

27.5.1 BGCRA - Band Gap Calibration Register A

Notes: 1. The register is only reset by POR.
2. The register can be locked by a timed sequence described in the BGLR register.

● Bit 7:0 - BGCN[7:0]: Band Gap Calibration Nominal
The calibration of the nominal value for the Band Gap module is done by Atmel factory calibration. The factory calibrated
value is automatically written to this register during chip reset, and should not be changed by the SW.

27.5.2 BGCRB - Band Gap Calibration Register B

Notes: 1. The register is only reset by POR.
2. The register can be locked by a timed sequence described in the BGLR register.

● Bit 7:0 - BGCL[7:0]: Band Gap Calibration Linear
The calibration of the linear value for the Band Gap module is done by Atmel factory calibration. The factory calibrated
value is automatically written to this register during chip reset, and should not be changed by the SW.

27.5.3 BGCSRA - Band Gap Control and Status Register A

Notes: 1. Due to synchronization of parameters between clock domains, a guard time of 3 ULP oscillator cycles + 3 CPU
clock cycles is required between each time the BGCSRA register is written. Any writing to the BGCSRA register
during this period will be ignored.

2. The register can be locked by a timed sequence described in the BGLR register.
3. After this register has been written, a guard time of 3 ULP oscillator cycles has to be added before entering Power-

down sleep mode.
● Bit 7:3 - Reserved

These bits are reserved and will always read as zero.
● Bit 2:0 - BGSC: Band Gap Sample Configuration

These bits control the sample mode functionality. When BGSC is set to 000, Band Gap sample mode is disabled and
Band Gap module will remain constant on in all sleep modes. When set to 111, the Band Gap module will remain con-
stant off in Power-down sleep mode. When set to other values, the Band Gap module will enter sample mode in Power-
down sleep mode. Timeout settings for the Band Gap Sample Mode are shown in Table 27-1.

Bit 7 6 5 4 3 2 1 0
(0xD3) BGCN[7:0] BGCRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Device specific calibration value

Bit 7 6 5 4 3 2 1 0
(0xD2) BGCL[7:0] BGCRB
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value Device specific calibration value

Bit 7 6 5 4 3 2 1 0
(0xD1) – – – – – BGCS[2:0] BGCSRA
Read/Write R R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
163Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

27.5.4 BGLR - Band Gap Lock Register

● Bit 7:2 - Reserved
These bits are reserved and will always read as zero.

● Bit 1 - BGPLE: Band Gap Lock
The BGCRA, BGCRB and BGCSRA registers can be locked from any further software updates. Once locked, these reg-
isters cannot be accessed until the next hardware reset.
To lock these registers, the following algorithm must be followed:

1. In the same operation, write a logic one to BGPLE and BGPL.
2. Within the next four clock cycles, in the same operation, write a logic zero to BGPLE and a logic one to BGPL.

Table 27-1. Timeout Settings for the Bandgap Sample Mode
BGSC t_off

000 Continuous mode
001 1ms
010 2ms
011 4ms
100 8ms
101 16ms
110 32ms

111(1) Infinite
Note: 1. This setting is not recommended unless BOD is disabled.

Bit 7 6 5 4 3 2 1 0
(0xD4) – – – – – – BGPLE BGPL BGLR
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0
164Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

28. debugWIRE On-chip Debug System

28.1 Features
● Complete program flow control
● Emulates all on-chip functions, both digital and analog, except RESET pin
● Real-time operation
● Symbolic debugging support (both at C and assembler source level, or for other HLLs)
● Unlimited number of program break points (using software break points)
● Non-intrusive operation
● Electrical characteristics identical to real device
● Automatic configuration system
● High-speed operation
● Programming of non-volatile memories

28.2 Overview
The debugWIRE On-chip debug system uses a One-wire, bi-directional interface to control the program flow, execute AVR
instructions in the CPU and to program the different non-volatile memories.

28.3 Physical Interface
When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unprogrammed, the debugWIRE system within
the target device is activated. The RESET port pin is configured as a wire-AND (open-drain) bi-directional I/O pin with pull-up
enabled and becomes the communication gateway between target and emulator.

Figure 28-1. The debugWIRE Setup

Figure 28-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator connector. The system clock is
not affected by debugWIRE and will always be the clock source selected by the OSCSEL Fuse.
When designing a system where debugWIRE will be used, the following observations must be made for correct operation:
● Pull-up resistors on the dW/(RESET) line must not be smaller than 10kΩ. The pull-up resistor is not required for

debugWIRE functionality.
● Connecting the RESET pin directly to VCC will not work.
● Capacitors connected to the RESET pin must be disconnected when using debugWire.
● All external reset sources must be disconnected.

GND

dW (RESET)

VCC

dW

3.0 to 5.5V
165Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

28.4 Software Break Points
debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a Break Point in AVR Studio® will
insert a BREAK instruction in the Program memory. The instruction replaced by the BREAK instruction will be stored. When
program execution is continued, the stored instruction will be executed before continuing from the Program memory. A break
can be inserted manually by putting the BREAK instruction in the program.
The Flash must be re-programmed each time a Break Point is changed. This is automatically handled by AVR Studio through
the debugWIRE interface. The use of Break Points will therefore reduce the Flash Data retention. Devices used for debugging
purposes should not be shipped to end customers.

28.5 Limitations of debugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External Reset (RESET). An External Reset
source is therefore not supported when the debugWIRE is enabled.
A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep modes. This will increase the
power consumption while in sleep. Thus, the DWEN Fuse should be disabled when debugWire is not used.
When using debugWIRE to access the flash (reading/writing), one must make sure the SPMCSR register is not locked from
before. If SPMCSR is locked the result of the operation may not be as expected.

28.6 Register Description
The following section describes the registers used with the debugWire.

28.6.1 DWDR – debugWire Data Register

The DWDR Register provides a communication channel from the running program in the MCU to the debugger. This register is
only accessible by the debugWIRE and can therefore not be used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0
0x31 (0x51) DWDR[7:0] DWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
166Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29. Boot Loader Support – Read-While-Write Self-Programming

29.1 Features
● Read-While-Write self-programming
● Flexible boot memory size
● High security (separate boot lock bits for a flexible protection)
● Separate fuse to select reset vector
● Optimized page(1) size
● Code efficient algorithm
● Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Section 30.5 “Page Size” on page 183) used dur-
ing programming. The page organization does not affect normal operation.

29.2 Overview
The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for downloading and uploading
program code by the MCU itself. This feature allows flexible application software updates controlled by the MCU using a Flash-
resident Boot Loader program. The Boot Loader program can use any available data interface and associated protocol to read
code and write (program) that code into the Flash memory, or read the code from the program memory. The program code
within the Boot Loader section has the capability to write into the entire Flash, including the Boot Loader memory. The Boot
Loader can thus even modify itself, and it can also erase itself from the code if the feature is not needed anymore. The size of
the Boot Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot Lock bits which can be
set independently. This gives the user a unique flexibility to select different levels of protection.

29.3 Application and Boot Loader Flash Sections
The Flash memory is organized in two main sections, the Application section and the Boot Loader section. The size of the
different sections is configured by the BOOTSZ Fuses as shown in Section 29.8.13 “Atmel ATmega32HVE Boot Loader
Parameters” on page 176 and Figure 29-2. These two sections can have different level of protection since they have different
sets of Lock bits.

29.3.1 Application Section

The Application section is the section of the Flash that is used for storing the application code. The protection level for the
Application section can be selected by the application Boot Lock bits (Boot Lock bits 0), see Table 30-2 on page 180. The
Application section can never store any Boot Loader code since the SPM instruction is disabled when executed from the
Application section.

29.3.2 BLS – Boot Loader Section

While the Application section is used for storing the application code, the The Boot Loader software must be located in the BLS
since the SPM instruction can initiate a programming when executing from the BLS only. The SPM instruction can access the
entire Flash, including the BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader Lock
bits (Boot Lock bits 1), see Table 30-2 on page 180.

29.4 Read-While-Write and No Read-While-Write Flash Sections
Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader software update is dependent on
which address that is being programmed. In addition to the two sections that are configurable by the BOOTSZ Fuses as
described above, the Flash is also divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-
While-Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Section 29.8.13 “Atmel
ATmega32HVE Boot Loader Parameters” on page 176 and Figure 29-2 on page 169. The main difference between the two
sections is:
● When erasing or writing a page located inside the RWW section, the NRWW section can be read during the operation.
● When erasing or writing a page located inside the NRWW section, the CPU is halted during the entire operation.
167Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Note that the user software can never read any code that is located inside the RWW section during a Boot Loader software
operation. The syntax “Read-While-Write section” refers to which section that is being programmed (erased or written), not
which section that actually is being read during a Boot Loader software update.

29.4.1 RWW – Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible to read code from the Flash, but
only code that is located in the NRWW section. During an on-going programming, the software must ensure that the RWW
section never is being read. If the user software is trying to read code that is located inside the RWW section (i.e., by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown state. To avoid this, the interrupts
should either be disabled or moved to the Boot Loader section. The Boot Loader section is always located in the NRWW
section. The RWW Section Busy bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be
read as logical one as long as the RWW section is blocked for reading. After a programming is completed, the RWWSB must be
cleared by software before reading code located in the RWW section. See Section 29.9.1 “SPMCSR – Store Program Memory
Control and Status Register” on page 178 for details on how to clear RWWSB.

29.4.2 NRWW – No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating a page in the RWW section.
When the Boot Loader code updates the NRWW section, the CPU is halted during the entire Page Erase or Page Write
operation.

Figure 29-1. Read-While-Write versus No Read-While-Write

Table 29-1. Read-While-Write Features
Which Section does the Z-pointer

Address During the Programming?
Which Section Can be Read

During Programming?
CPU

Halted?
Read-While-Write

Supported?
RWW Section NRWW Section No Yes

NRWW Section None Yes No

Read While Write
(RWW) Section

Z-pointer
Addresses RWW
Section

Code located in
NRWW Section
can be Read During
the Operation

No Read While Write
(RWW) Section

Z-pointer
Addresses NRWW
Section

CPU is halted During
the Operation
168Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 29-2. Memory Sections

Note: The parameters in the figure above are given in Section 29.8.13 “Atmel ATmega32HVE Boot Loader Parameters”
on page 176.

29.5 Boot Loader Lock Bits
If no Boot Loader capability is needed, the entire Flash is available for application code. The Boot Loader has two separate sets
of Boot Lock bits which can be set independently. This gives the user a unique flexibility to select different levels of protection.
The user can select:
● To protect the entire Flash from a software update by the MCU.
● To protect only the Boot Loader Flash section from a software update by the MCU.
● To protect only the Application Flash section from a software update by the MCU.
● Allow software update in the entire Flash.

See Table 30-2 on page 180 for further details. The Boot Lock bits can be set in software and in Serial or Parallel Programming
mode, but they can be cleared by a Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the
programming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit mode 1) does not
control reading nor writing by LPM/SPM, if it is attempted.

Boot Loader Flash Section

Application Flash Section

Application Flash Section

Program Memory
BOOTSZ = ’11’

0x0000

Flashend

R
ea

d-
W

hi
le

 W
ri

te
 S

ec
tio

n
N

o
R

ea
d-

W
hi

le
W

ri
te

 S
ec

tio
n

End RWW
Start NRWW

End Application
Start Boot Loader Boot Loader Flash Section

Application Flash Section

Application Flash Section

Program Memory
BOOTSZ = ’10’

0x0000

Flashend

R
ea

d-
W

hi
le

 W
ri

te
 S

ec
tio

n
N

o
R

ea
d-

W
hi

le
W

ri
te

 S
ec

tio
n

End RWW
Start NRWW

End Application
Start Boot Loader

Boot Loader Flash Section

Application Flash Section

Application Flash Section

Program Memory
BOOTSZ = ’01’

0x0000

Flashend

R
ea

d-
W

hi
le

 W
ri

te
 S

ec
tio

n
N

o
R

ea
d-

W
hi

le
W

ri
te

 S
ec

tio
n

End RWW
Start NRWW

End Application
Start Boot Loader

Boot Loader Flash Section

Application Flash Section

Program Memory
BOOTSZ = ’00’

0x0000

Flashend

R
ea

d-
W

hi
le

 W
ri

te
 S

ec
tio

n
N

o
R

ea
d-

W
hi

le
W

ri
te

 S
ec

tio
n

End RWW, End Application
Start NRWW, Start Boot Loader
169Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29.6 Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may be initiated by a trigger such as
a command received via the SPI or LIN. Alternatively, the Boot Reset Fuse can be programmed so that the Reset Vector is
pointing to the Boot Flash start address after a reset. In this case, the Boot Loader is started after a reset. After the application
code is loaded, the program can start executing the application code. Note that the fuses cannot be changed by the MCU itself.
This means that once the Boot Reset Fuse is programmed, the Reset Vector will always point to the Boot Loader Reset and the
fuse can only be changed through the serial or parallel programming interface.

29.7 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Section 30.2 “Fuse Bits” on page 181), the Program Counter can be treated as
having two different sections. One section, consisting of the least significant bits, is addressing the words within a page, while
the most significant bits are addressing the pages. This is shown in Figure 29-3. Note that the Page Erase and Page Write
operations are addressed independently. Therefore it is of major importance that the Boot Loader software addresses the same
page in both the Page Erase and Page Write operation. Once a programming operation is initiated, the address is latched and
the Z-pointer can be used for other operations.
The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits. The content of the Z-pointer is
ignored and will have no effect on the operation. The LPM instruction does also use the Z-pointer to store the address. Since
this instruction addresses the Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 29-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 29-3 are listed in Section 29.8.13 “Atmel ATmega32HVE Boot Loader
Parameters” on page 176 and Section 29.8.14 “Atmel ATmega64HVE Boot Loader Parameters” on page 177.

Table 29-2. Boot Reset Fuse(1)

BOOTRST Reset Address
1 Reset Vector = Application Reset (address 0x0000)
0 Reset Vector = Boot Loader Reset (see Table 29-5 on page 176)

Note: 1. “1” means unprogrammed, “0” means programmed

Bit 15 14 13 12 11 10 9 8
ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8
ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

BIT

PAGEMSBPCMSB

ZPAGEMSBZPCMSB 0115

Z-REGISTER

PROGRAM
COUNTER

WORD ADDRESS
WITHIN PAGE

PAGE ADDRESS
WITHIN THE FLASH

0

PCWORDPCPAGE

Instruction Word

Page

02

01

00

PAGEEND

PCWORD [PAGEMSB : 0]

Page

Program Memory
170Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29.8 Self-Programming the Flash
The Self-Programming routine should always ensure that the PLL is in lock before continuing. The program memory is updated
in a page by page fashion. Before programming a page with the data stored in the temporary page buffer, the page must be
erased. The temporary page buffer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:
Alternative 1, fill the buffer before a Page Erase
● Fill temporary page buffer
● Perform a Page Erase
● Perform a Page Write

Alternative 2, fill the buffer after Page Erase
● Perform a Page Erase
● Fill temporary page buffer
● Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example in the temporary page buffer)
before the erase, and then be rewritten. When using alternative 1, the Boot Loader provides an effective Read-Modify-Write
feature which allows the user software to first read the page, do the necessary changes, and then write back the modified data.
If alternative 2 is used, it is not possible to read the old data while loading since the page is already erased. The temporary page
buffer can be accessed in a random sequence. It is essential that the page address used in both the Page Erase and Page
Write operation is addressing the same page. See Section 29.8.12 “Simple Assembly Code Example for a Boot Loader” on
page 174 for an assembly code example.

29.8.1 Performing Page Erase by SPM

To execute Page Erase, wait until the PLL enters LOCK(1), set up the address in the Z-pointer, write “X0000011” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be
written to PCPAGE in the Z-register. Other bits in the Z-pointer will be ignored during this operation.
● Page Erase to the RWW section: The NRWW section can be read during the Page Erase.
● Page Erase to the NRWW section: The CPU is halted during the operation.

Note: 1. For the PLL lock status, see the PLLCSR register.

29.8.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, wait until the PLL enters LOCK(1), set up the address in the Z-pointer and data in R1:R0, write
“X0000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The content of PCWORD in the Z-
register is used to address the data in the temporary buffer. The temporary buffer will auto-erase after a Page Write operation or
by writing the RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than one
time to each address without erasing the temporary buffer. Any EEPROM read or write during an SPM operation is not
recommended.
Note: 1. For the PLL lock status, see the PLLCSR register.

29.8.3 Performing a Page Write

To execute Page Write, wait until the PLL enters LOCK(1), set up the address in the Z-pointer, write “X0000101” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be
written to PCPAGE. Other bits in the Z-pointer will be ignored during this operation.
● Page Write to the RWW section: The NRWW section can be read during the Page Write.
● Page Write to the NRWW section: The CPU is halted during the operation.

Note: 1. For the PLL lock status, see the PLLCSR register.
171Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29.8.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SPMEN bit in SPMCSR is cleared.
This means that the interrupt can be used instead of polling the SPMCSR Register in software. When using the SPM interrupt,
the Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in Section 19. “Interrupts” on page 70.

29.8.5 Consideration While Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving Boot Lock bit11 unprogrammed.
An accidental write to the Boot Loader itself can corrupt the entire Boot Loader, and further software updates might be
impossible. If it is not necessary to change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

29.8.6 Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always blocked for reading. The user software
itself must prevent that this section is addressed during the self programming operation. The RWWSB in the SPMCSR will be
set as long as the RWW section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS as
described in “Interrupts” on page 70, or the interrupts must be disabled. Before addressing the RWW section after the
programming is completed, the user software must clear the RWWSB by writing the RWWSRE. See Section 29.8.12 “Simple
Assembly Code Example for a Boot Loader” on page 174 for an example.

29.8.7 Setting the Lock Bits by SPM

To set the Lock bits, wait until the PLL enters LOCK(1), write the desired data to R0, write “X0001001” to SPMCSR and execute
SPM within four clock cycles after writing SPMCSR.

See following Table 30-2 on page 180 for how the different settings of the Lock bits affect the Flash access.
If bits 5:0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an SPM instruction is executed within four
cycles after LBSET and SPMEN are set in SPMCSR. The Z-pointer is don’t care during this operation, but for future
compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future
compatibility it is also recommended to set bits 7 and 6 in R0 to “1” when writing the Lock bits. When programming the Lock bits
the entire Flash can be read during the operation.
Note: 1. For the PLL lock status, see the PLLCSR register.

29.8.8 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the Z-pointer with 0x0001 and set
the LBSET and SPMEN bits in SPMCSR. When an LPM instruction is executed within three CPU cycles after the LBSET and
SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destination register. The LBSET and SPMEN
bits will auto-clear upon completion of reading the Lock bits. When LBSET and SPMEN are cleared, LPM will work as described
in the ”AVR Instruction Set” description.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading the Lock bits. To read the Fuse
Low byte, load the Z-pointer with 0x0000 and set the LBSET and SPMEN bits in SPMCSR. When an LPM instruction is
executed within three cycles after the LBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB)
will be loaded in the destination register as shown below. Refer to Table 30-4 on page 182 for a detailed description and
mapping of the Fuse Low byte.

Bit 7 6 5 4 3 2 1 0
R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0
Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0
172Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruction is executed within three
cycles after the LBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the
destination register as shown below. Refer to Table 30-3 on page 181 for detailed description and mapping of the Fuse High
byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are unprogrammed, will be read as one.

29.8.9 Reading the Signature Row from Software

To read the Signature Row from software, load the Z-pointer with the signature byte address given in Section 30.3 “Signature
Bytes” on page 182 and set the SIGRD and SPMEN bits in SPMCSR. When an LPM instruction is executed within three CPU
cycles after the SIGRD and SPMEN bits are set in SPMCSR, the signature byte value will be loaded in the destination register.
The SIGRD and SPMEN bits will auto-clear 6 cycles after writing to SPMCSR, which is locked for further writing during these
cycles. When SIGRD and SPMEN are cleared, LPM will work as described in the Instruction set Manual

All other addresses are reserved for future use.

29.8.10 SPMCSR Writing Restrictions

Writing any other combination than “100001”, “010001”, “001001”, “000101”, “000011” or “000001” in the lower six bits will have
no effect.
SPMCSR is locked for writing under the following conditions:
● One or more of the bits 5:0 in SPMCSR is set to 1
● During EEPROM write (status bit EEWE in EECR is set)

SPMCSR will be cleared at the following events:
● on completion of successful execution the following instructions:

● LPM with LBSET and SPMEN set
● LPM with SIGRD and SPMEN set
● SPM with LBSET and SPMEN set
● SPM with PGERS and SPMEN set
● SPM with PGWRT and SPMEN set
● SPM with SPMEN set

● six cycles after writing SPMCSR if any other or no LPM/SPM is executed

29.8.11 Programming Time for Flash when Using SPM

The PLL Oscillator is used to time Flash accesses. The PLL Oscillator should be in lock before writing to the flash. Table 29-4
shows the typical programming time for Flash accesses from the CPU.

Note: 1. Minimum and maximum programming time is per individual operation.

Bit 7 6 5 4 3 2 1 0
Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Table 29-3. Signature Bytes
Word-Address Byte Description

0x0010 VTEMPBASE (16 bit value)
0x0011 VTEMPSLOPE (16 bit value); high byte: slope hot, low byte: slope cold

Table 29-4. SPM Programming Time(1)

Symbol Min Programming Time Max Programming Time
Flash write (Page Erase, Page Write, and write Lock
bits by SPM) 3.7ms 4.5ms
173Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29.8.12 Simple Assembly Code Example for a Boot Loader
;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-checking that the PLL is in lock is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section
; can be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the
; Boot loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:

; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB);init loop variable
ldi loophi, high(PAGESIZEB);not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB);restore pointer
sbci ZH, high(PAGESIZEB);not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB);init loop variable
ldi loophi, high(PAGESIZEB);not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB);restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1;use subi for PAGESIZEB<=256
brne Rdloop
174Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready

yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
175Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29.8.13 Atmel ATmega32HVE Boot Loader Parameters

In Table 29-5 through Table 29-7, the parameters used in the description of the Self-Programming are given.

Table 29-5. Boot Size Configuration(1)

B
O

O
TS

Z1

B
O

O
TS

Z0

B
oo

t S
iz

e

Pa
ge

s

A
pp

lic
at

io
n

Fl
as

h
Se

ct
io

n

B
oo

t L
oa

de
r

Fl
as

h
Se

ct
io

n

En
d

A
pp

lic
at

io
n

Se
ct

io
n

B
oo

t R
es

et

A
dd

re
ss

(S

ta
rt

 B
oo

t
Lo

ad
er

 S
ec

tio
n)

1 1 256 words 4 0x0000 - 0x3EFF 0x3F00 - 0x3FFF 0x3EFF 0x3F00
1 0 512 words 8 0x0000 - 0x3DFF 0x3E00 - 0x3FFF 0x3DFF 0x3E00
0 1 1024 words 16 0x0000 - 0x3BFF 0x3C00 - 0x3FFF 0x3BFF 0x3C00
0 0 2048 words 32 0x0000 - 0x37FF 0x3800 - 0x3FFF 0x37FF 0x3800

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 29-2

Table 29-6. Read-While-Write Limit(1)

Section Pages Address
Read-While-Write section (RWW) 224 0x0000 - 0x37FF
No Read-While-Write section (NRWW) 32 0x3800 - 0x3FFF
Note: 1. For details about these two section, see Section 29.4.2 “NRWW – No Read-While-Write Section” on page 168 and Sec-

tion 29.4.1 “RWW – Read-While-Write Section” on page 168.

Table 29-7. Explanation of Different Variables Used in Figure 29-3 on page 170 and the Mapping to the Z-pointer(1)

Variable Corresponding Z-value Description

PCMSB 13 Most significant bit in the Program Counter. (The Program Counter is
14 bits PC[13:0])

PAGEMSB 5 Most significant bit which is used to address the words within one
page (64 words in a page requires six bits PC [5:0]).

ZPCMSB Z14 Bit in Z-register that is mapped to PCMSB. Because Z0 is not used,
the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6 Bit in Z-register that is mapped to PCMSB. Because Z0 is not used,
the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[13:6] Z13:Z7 Program Counter page address: Page select, for Page Erase and
Page Write

PCWORD PC[5:0] Z6:Z1 Program Counter word address: Word select, for filling temporary
buffer (must be zero during Page Write operation)

Note: 1. Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See Section 29.7 “Addressing the Flash During Self-Programming” on page 170 for details about the use of Z-pointer dur-
ing Self-Programming.
176Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29.8.14 Atmel ATmega64HVE Boot Loader Parameters

In Table 29-5 through Table 29-7, the parameters used in the description of the Self-Programming are given.

Table 29-8. Boot Size Configuration(1)

B
O

O
TS

Z1

B
O

O
TS

Z0

B
oo

t S
iz

e

Pa
ge

s

A
pp

lic
at

io
n

Fl
as

h
Se

ct
io

n

B
oo

t L
oa

de
r

Fl
as

h
Se

ct
io

n

En
d

A
pp

lic
at

io
n

Se
ct

io
n

B
oo

t R
es

et

A
dd

re
ss

(S

ta
rt

 B
oo

t
Lo

ad
er

 S
ec

tio
n)

1 1 256 words 4 0x0000 - 0x7EFF 0x7F00 - 0x7FFF 0x7EFF 0x7F00
1 0 512 words 8 0x0000 - 0x7DFF 0x7E00 - 0x7FFF 0x7DFF 0x7E00
0 1 1024 words 16 0x0000 - 0x7BFF 0x7C00 - 0x7FFF 0x7BFF 0x7C00
0 0 2048 words 32 0x0000 - 0x77FF 0x7800 - 0x7FFF 0x77FF 0x7800

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 29-2

Table 29-9. Read-While-Write Limit(1)

Section Pages Address
Read-While-Write section (RWW) 480 0x0000 - 0x77FF
No Read-While-Write section (NRWW) 32 0x7800 - 0x7FFF
Note: 1. For details about these two section, see Section 29.4.2 “NRWW – No Read-While-Write Section” on page 168 and Sec-

tion 29.4.1 “RWW – Read-While-Write Section” on page 168.

Table 29-10. Explanation of Different Variables used in Figure 29-3 on page 170 and the Mapping to the Z-pointer(1)

Variable Corresponding Z-value Description

PCMSB 14 Most significant bit in the Program Counter. (The Program Counter is
15 bits PC[14:0])

PAGEMSB 5 Most significant bit which is used to address the words within one
page (64 words in a page requires six bits PC [5:0]).

ZPCMSB Z15 Bit in Z-register that is mapped to PCMSB. Because Z0 is not used,
the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6 Bit in Z-register that is mapped to PCMSB. Because Z0 is not used,
the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[14:6] Z14:Z7 Program Counter page address: Page select, for Page Erase and
Page Write

PCWORD PC[5:0] Z6:Z1 Program Counter word address: Word select, for filling temporary
buffer (must be zero during Page Write operation)

Note: 1. Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See Section 29.7 “Addressing the Flash During Self-Programming” on page 170 for details about the use of Z-pointer dur-
ing Self-Programming.
177Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29.9 Register Description

29.9.1 SPMCSR – Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to control the Boot Loader operations.

● Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM ready interrupt will be
enabled. The SPM ready Interrupt will be executed as long as the SPMEN bit in the SPMCSR Register is cleared.

● Bit 6 – RWWSB: Read-While-Write Section Busy
When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initiated, the RWWSB will be set
(one) by hardware. When the RWWSB bit is set, the RWW section cannot be accessed. The RWWSB bit will be cleared
if the RWWSRE bit is written to one after a Self-Programming operation is completed. Alternatively the RWWSB bit will
automatically be cleared if a page load operation is initiated.

● Bit 5 - SIGRD: Signature Row Read
If this bit is written to one at the same time as SPMEN, the next LPM instruction within three clock cycles will read a byte
from the signature row into the destination register. See Section 29.8.9 “Reading the Signature Row from Software” on
page 173 for details.
An SPM instruction within four cycles after SIGRD and SPMEN are set will have no effect. This operation is reserved for
future use and should not be used.

● Bit 4 – RWWSRE: Read-While-Write Section Read Enable
When programming (Page Erase or Page Write) to the RWW section, the RWW section is blocked for reading (the
RWWSB will be set by hardware). To re-enable the RWW section, the user software must wait until the programming is
completed (SPMEN will be cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the next
SPM instruction within four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while the
Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is written while the Flash is being
loaded, the Flash load operation will abort and the data loaded will be lost.

● Bit 3 – LBSET: Lock Bit Set
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles sets Lock bits,
according to the data in R0. The data in R1 and the address in the Z-pointer are ignored. The LBSET bit will automati-
cally be cleared upon completion of the Lock bit set, or after six cycles if no SPM instruction is executed within four clock
cycles.
An LPM instruction within three cycles after LBSET and SPMEN are set in the SPMCSR Register, will read either the
Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the destination register. See Section 29.8.8 “Reading
the Fuse and Lock Bits from Software” on page 172 for details.

● Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes Page
Write, with the data stored in the temporary buffer. The page address is taken from the high part of the Z-pointer. The
data in R1 and R0 are ignored. The PGWRT bit will auto-clear upon completion of a Page Write, or after six cycles if no
SPM instruction is executed within four clock cycles. The CPU is halted during the entire Page Write operation if the
NRWW section is addressed.

● Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes Page
Erase. The page address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGERS bit
will auto-clear upon completion of a Page Erase, or after six cycles if no SPM instruction is executed within four clock
cycles. The CPU is halted during the entire Page Write operation if the NRWW section is addressed.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB SIGRD RWWSRE LBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
178Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 0 – SPMEN: Store Program Memory Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together with either RWWSRE,
LBSET, PGWRT’ or PGERS, the following SPM instruction will have a special meaning, see description above. If only
SPMEN is written, the following SPM instruction will store the value in R1:R0 in the temporary page buffer addressed by
the Z-pointer. The LSB of the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or after six cycles if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write, the
SPMEN bit remains high until the operation is completed.
179Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30. Memory Programming

30.1 Program And Data Memory Lock Bits
The Atmel® AVR MCU provides six Lock bits which can be left unprogrammed (“1”) or can be programmed (“0”) to obtain the
additional features listed in Table 30-2. The Lock bits can only be erased to “1” with the Chip Erase command.

Table 30-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value
7 – 1 (unprogrammed)
6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)
BLB11 4 Boot Lock bit 1 (unprogrammed)
BLB02 3 Boot Lock bit 1 (unprogrammed)
BLB01 2 Boot Lock bit 1 (unprogrammed)
LB2 1 Lock bit 1 (unprogrammed)
LB1 0 Lock bit 1 (unprogrammed)
“1” means unprogrammed, “0” means programmed

Table 30-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type
LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled in Parallel and Serial
Programming mode. The Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

3 0 0
Further programming and verification of the Flash and EEPROM is disabled in
Parallel and Serial Programming mode. The Boot Lock bits and Fuse bits are
locked in both Serial and Parallel Programming mode.(1)

BLB0 Mode BLB02 BLB01
1 1 1 No restrictions for SPM or LPM accessing the Application section.
2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM executing from the
Boot Loader section is not allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts are disabled while
executing from the Application section.

4 0 1
LPM executing from the Boot Loader section is not allowed to read from the
Application section. If Interrupt Vectors are placed in the Boot Loader section,
interrupts are disabled while executing from the Application section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed
180Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.2 Fuse Bits
The Atmel® AVR MCU has two Fuse bytes. Table 30-4 and Table 30-3 describe briefly the functionality of all the fuses and how
they are mapped into the Fuse byte. Note that the fuses are read as logical zero, “0”, if they are programmed.

30.2.1 High Byte

BLB1
Mode BLB12 BLB11

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader section.
2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM executing from
the Application section is not allowed to read from the Boot Loader section. If
Interrupt Vectors are placed in the Application section, interrupts are disabled
while executing from the Boot Loader section.

4 0 1
LPM executing from the Application section is not allowed to read from the Boot
Loader section. If Interrupt Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

Table 30-2. Lock Bit Protection Modes(1)(2) (Continued)
Memory Lock Bits Protection Type

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

Table 30-3. Fuse High Byte
Bit No Fuse High Byte Description Default Value

3 DWEN Enable debugWire 1 (unprogrammed)
2 BOOTSZ1 Select Boot Size 0 (programmed)(1)

1 BOOTSZ0 Selecrt Boot Size 0 (programmed)(1)

0 BOOTRST Select Reset Vector 1 (unprogrammed)
Note: 1. The default value of BOOTSZ1:0 results in maximum Boot Size.
181Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.2.2 Low Byte

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if Lock bit1 (LB1) is programmed.
Program the Fuse bits before programming the Lock bits.

30.2.3 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the fuse values will have no effect until
the part leaves Programming mode. This does not apply to the EESAVE Fuse which will take effect once it is programmed. The
fuses are also latched on Power-up in Normal mode.

30.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This code can be read in both
Programming mode, also when the device is locked. The three bytes reside in a separate address space. The signature bytes
of the Atmel® AVR MCU are given in Table 30-5.

30.4 Calibration Bytes
The Atmel® AVR MCU has calibration bytes for the RC Oscillators, internal voltage reference, internal temperature reference
and TBD. These bytes reside in the signature address space. See Section 29.8.9 “Reading the Signature Row from Software”
on page 173 for details.

Table 30-4. Fuse Low Byte
Bit No Fuse Low Byte Description Default Value

7 WDTON Watchdog Timer always on 1 (unprogrammed)(1)

6 EESAVE EEPROM memory is preserved through the
Chip Erase

1 (unprogrammed, EEPROM not
preserved)

5 SPIEN Enable Serial Programmable Data
Downloading

0 (programmed, SPI programming
enabled)

4 BODEN BOD Enable 1 (unprogrammed, BOD disabled)(5)

3 CKDIV8(3) Divide clock by 8 0 (programmed)
2:1 SUT1:0 Select start-up time 11 (unprogrammed)(2)

0 OSCSEL0 Oscillator Select 1 (unprogrammed)(4)

Notes: 1. The Watchdog is enabled/disabling by writing to the Watchdog Timer Control and Status Register (WDTCSR).
But as a fail-safe, the WDTON fuse can be used to force the Watchdog to run in System Reset mode.

2. The SUTx fuse bits are used to configure the startup time from sleep or reset. By default the longest startup
time is selected.

3. See Section 15.4 “System Clock Prescaler” on page 50 for details.
4. When unprogrammed, PLL is used as system clock source. Programming this fuse is for test purpose only, and

should not be used in application.
5. Disabling BOD assumed that safe VCC operation is guaranteed by other parts of the application.

Table 30-5. Device ID

Part
Signature Bytes Address

0x000 0x001 0x002
Atmel ATmega32HVE 0x1E 0x95 0x13
Atmel ATmega64HVE 0x1E 0x96 0x10
182Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.5 Page Size

30.6 Serial Programming
Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET is pulled to GND. The
serial interface consists of pins SCK, MOSI (input) and MISO (output). After RESET is set low, the Programming Enable
instruction needs to be executed first before program/erase operations can be executed. NOTE, in Table 30-8 on page 183, the
pin mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal SPI interface.

Figure 30-1. Serial Programming and Verify

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming operation (in the Serial mode
ONLY) and there is no need to first execute the Chip Erase instruction. The Chip Erase operation turns the content of every
memory location in both the Program and EEPROM arrays into 0xFF.
Depending on the OSCSEL Fuse, a valid clock must be present. The minimum low and high periods for the serial clock (SCK)
input are defined as follows:
Low: > 2.2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz
High: > 2.2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

Table 30-6. No. of Words in a Page and No. of Pages in the Flash, Atmel AVR MCU
Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

16K words (32Kbytes) 64 words PC[5:0] 256 PC[13:6] 13
32K words (64Kbytes) 64 words PC[5:0] 512 PC[14:6] 14

Table 30-7. No. of Words in a Page and No. of Pages in the EEPROM, Atmel AVR MCU
EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

1Kbytes 4 bytes EEA[1:0] 256 EEA[9:2] 9

Table 30-8. Pin Mapping Serial Programming
Symbol Pins I/O Description

SCK PB5 I Serial Clock
MOSI PB6 I Serial Data in
MISO PB7 O Serial Data out

GND

RESET

VCC

SCK

+ 3 to 5.5V

MISO

MOSI
183Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.6.1 Serial Programming Algorithm

When writing serial data to the Atmel® AVR MCU, data is clocked on the rising edge of SCK.
When reading data from the Atmel AVR MCU, data is clocked on the falling edge of SCK.
To program and verify the Atmel AVR MCU in the Serial Programming mode, the following sequence is recommended. See four
byte instruction formats in following Table 30-10 on page 185

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some systems, the programmer can not
guarantee that SCK is held low during power-up. In this case, RESET must be given a positive pulse of at least two
CPU clock cycles duration after SCK has been set to “0”.

2. Wait for at least 20ms and enable serial programming by sending the Programming Enable serial instruction to pin
MOSI. For this instruction, minimum low and high periods for the serial clock (SCK) must be doubled.

3. The serial programming instructions will not work if the communication is out of synchronization. When in sync. the
second byte (0x53), will echo back when issuing the third byte of the Programming Enable instruction. Whether the
echo is correct or not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET
a positive pulse and issue a new Programming Enable command.

4. Wait for at least 1.3 ms after successful Programming Enable before issuing any programming commands.
5. The Flash is programmed one page at a time. The memory page is loaded one byte at a time by supplying the 5 LSB

of the address and data together with the Load Program memory Page instruction. To ensure correct loading of the
page, the data low byte must be loaded before data high byte is applied for a given address. The Program memory
Page is stored by loading the Write Program memory Page instruction with the 6 MSB of the address. If polling
(RDY/BSY) is not used, the user must wait at least tWD_FLASH before issuing the next page. (See Table 30-9.) Access-
ing the serial programming interface before the Flash write operation completes can result in incorrect programming.

6. A: The EEPROM array is programmed one byte at a time by supplying the address and data together with the appro-
priate Write instruction. An EEPROM memory location is first automatically erased before new data is written. If
polling (RDY/BSY) is not used, the user must wait at least tWD_EEPROM before issuing the next byte. (See Table 30-9.)
In a chip erased device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The Memory page is loaded one byte at a time by supply-
ing the 2 LSB of the address and data together with the Load EEPROM Memory Page instruction. The EEPROM
Memory Page is stored by loading the Write EEPROM Memory Page Instruction with the 6 MSB of the address.
When using EEPROM page access only byte locations loaded with the Load EEPROM Memory Page instruction is
altered. The remaining locations remain unchanged. If polling (RDY/BSY) is not used, the used must wait at least
tWD_EEPROM before issuing the next page (See Table 30-9 on page 184). In a chip erased device, no 0xFF in the data
file(s) need to be programmed.

7. Any memory location can be verified by using the Read instruction which returns the content at the selected address
at serial output MISO.

8. At the end of the programming session, RESET can be set high to commence normal operation.
9. Power-off sequence (if needed):

Set RESET to “1”.
Turn VCC power off.

Table 30-9. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location
Symbol Minimum Wait Delay
tWD_FLASH 4.5ms

tWD_EEPROM 4.0ms
tWD_ERASE 4.0ms
tWD_FUSE 4.5ms
184Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.6.2 Serial Programming Instruction set

Table 30-10 on page 185 and Figure 30-2 on page 186 describes the Instruction set.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until this bit returns ‘0’ before the next
instruction is carried out.
Within the same page, the low data byte must be loaded prior to the high data byte.
After data is loaded to the page buffer, program the EEPROM page, see Figure 30-2 on page 186.

Table 30-10. Serial Programming Instruction Set

Instruction/Operation
Instruction Format

Byte 1 Byte 2 Byte 3 Byte4
Programming Enable $AC $53 $00 $00
Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00
Poll RDY/BSY $F0 $00 $00 data byte out
Load Instructions
Load Extended Address byte(1) $4D $00 Extended adr $00
Load Program Memory Page, High byte $48 adr MSB adr LSB high data byte in
Load Program Memory Page, Low byte $40 adr MSB adr LSB low data byte in
Load EEPROM Memory Page (page access) $C1 adr MSB adr LSB data byte in
Read Instructions
Read Program Memory, High byte $28 adr MSB adr LSB high data byte out
Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out
Read EEPROM Memory $A0 adr MSB adr LSB data byte out
Read Lock bits $58 $00 $00 data byte out
Read Signature Byte $30 $00 adr LSB data byte out
Read Fuse bits $50 $00 $00 data byte out
Read Fuse High bits $58 $08 $00 data byte out
Read Extended Fuse Bits $50 $08 $00 data byte out
Read Calibration Byte $38 $00 $00 data byte out
Write Instructions(6)
Write Program Memory Page $4C adr MSB adr LSB $00
Write EEPROM Memory $C0 adr MSB adr LSB data byte in
Write EEPROM Memory Page (page access) $C2 adr MSB adr LSB $00
Write Lock bits $AC $E0 $00 data byte in
Write Fuse bits $AC $A0 $00 data byte in
Write Fuse High bits $AC $A8 $00 data byte in
Write Extended Fuse Bits $AC $A4 $00 data byte in
Notes: 1. Not all instructions are applicable for all parts.

2. a = address
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’) .
5. Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature bytes and Page size.
6. Instructions accessing program memory use word address. This address may be random within the page range.
7. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.
185Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 30-2. Serial Programming Instruction Example

30.7 High-Voltage Serial Programming
This section describes how to program and verify Flash Program memory, EEPROM Data memory, Lock bits and Fuse bits in
the Atmel® AVR MCU.

Figure 30-3. High-voltage Serial Programming

Byte 1 Byte 2 Byte 3 Byte 4

Page 0

Page 1

Page 2

Adr LBSAdr MBS

Bit 15 B 0 Bit 15 B 0

Byte 1 Byte 2 Byte 3 Byte 4

Adr LBSAdr MBS

Page N-1

Program Memory /
EEPROM Memory

Page Buffer

Page Number

Page Offset

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Write Program Memory Page /
Write EEPROM Memory Page

GND

RESET VCC

SDI SDO

SII

SCI

+ 3.0 to 3.5V

Prog_enable [0]

+ 11.5 to 12.5V
186Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.8 High-voltage Serial Programming Algorithm
To program and verify the Atmel® AVR MCU in the High-voltage Serial Programming mode, the following sequence is
recommended (See instruction formats in Table 30-14):

30.8.1 Enter High-voltage Serial Programming Mode

The following algorithm puts the device in Serial (High-voltage) Programming mode:
1. Set Prog_enable pins listed in Table 30-12 on page 187 to “0000”, RESET pin to 0V and VCC to 0V.
2. Apply 3.0 - 3.5V between VCC and GND. Ensure that VCC reaches at least 1.8V within the next 20 µs.
3. Wait 20 - 60 µs, and apply VHRST - 12.5V to RESET.
4. Keep the Prog_enable pins unchanged for at least tHVRST after the High-voltage has been applied to ensure the

Prog_enable Signature has been latched.
5. Release Prog_enable[1] pin to avoid drive contention on the Prog_enable[1]/SDO pin.
6. Wait at least 1.3 ms before giving any serial instructions on SDI/SII.
7. If the rise time of the VCC is unable to fulfill the requirements listed above, the following alternative algorithm can be

used.
8. Set Prog_enable pins listed in Table 30-12 on page 187 to “0000”, RESET pin to 0V and VCC to 0V.
9. Apply 3.0 - 3.5V between VCC and GND.
10. Monitor VCC, and as soon as VCC reaches 0.9 - 1.1V, apply VHRST - 12.5V to RESET.
11. Keep the Prog_enable pins unchanged for at least tHVRST after the High-voltage has been applied to ensure the

Prog_enable Signature has been latched.
12. Release Prog_enable[1] pin to avoid drive contention on the Prog_enable[1]/SDO pin.
13. Wait until VCC actually reaches 3.0 - 3.5V.
14. Wait at least 1.3ms before giving any serial instructions on SDI/SII.

Table 30-11. Pin Name Mapping
Signal Name in High-voltage Serial

Programming Mode Pin Name I/O Function
SDO PB5 O Serial Data Output
SDI PB6 I Serial Data Input
SII PB7 I Serial Instruction Input
SCI PB2 I Serial Clock Input (min. 2/fck period)

Table 30-12. Pin Values Used to Enter Programming Mode
Pin Name Symbol Value

PB4 Prog_enable[0] 0
PB5 Prog_enable[1] 0
PB6 Prog_enable[2] 0
PB7 Prog_enable[3] 0

Table 30-13. High-voltage Reset Characteristics

Supply Voltage RESET Pin High-voltage Threshold
Minimum High-voltage Period for Latching

Prog_enable
VCC VHVRST tHVRST

3.0V 11.5V 10 µs
3.5V 11.5V 10 µs
187Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.8.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient programming, the following
should be considered.
● The command needs only be loaded once when writing or reading multiple memory locations.
● Skip writing the data value 0xFF that is the contents of the entire EEPROM (unless the EESAVE Fuse is programmed)

and Flash after a Chip Erase.
● Address High byte needs only be loaded before programming or reading a new 256 word window in Flash or 256 byte

EEPROM. This consideration also applies to Signature bytes reading.

30.8.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are not reset until the Program
memory has been completely erased. The Fuse bits are not changed. A Chip Erase must be performed before the Flash and/or
EEPROM are re-programmed.
Note: 1. The EEPROM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

1. Load command “Chip Erase” (see Table 30-14).
2. Wait after Instr.3 until SDO goes high for the “Chip Erase” cycle to finish.
3. Load Command “No Operation”.

30.8.4 Programming the Flash

The Flash is organized in pages, see Table 30-10 on page 185. When programming the Flash, the program data is latched into
a page buffer. This allows one page of program data to be programmed simultaneously. The following procedure describes how
to program the entire Flash memory:

1. Load Command “Write Flash” (see Table 30-14).
2. Load Flash Page Buffer.
3. Load Flash High Address and Program Page. Wait after Instr. 3 until SDO goes high for the “Page Programming”

cycle to finish.
4. Repeat 2 through 3 until the entire Flash is programmed or until all data has been programmed.
5. End Page Programming by Loading Command “No Operation”.

When writing or reading serial data to the Atmel® AVR MCU, data is clocked on the rising edge of the serial clock, see Figure
30-5, Figure 31-5 and Section 31.8.2 “High-voltage Serial Programming” on page 202 for details.

Figure 30-4. Addressing the Flash which is Organized in Pages
PAGEMSBPCMSB

PROGRAM
COUNTER

WORD ADDRESS
WITHIN PAGE

PAGE ADDRESS
WITHIN THE FLASH

PCWORDPCPAGE

Instruction Word

Page

02

01

00

PAGEEND

PCWORD [PAGEMSB : 0]

Page

Program Memory
188Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 30-5. High-voltage Serial Programming Waveforms

30.8.5 Programming the EEPROM

The EEPROM is organized in pages, see Section 31.8.2 “High-voltage Serial Programming” on page 202. When programming
the EEPROM, the data is latched into a page buffer. This allows one page of data to be programmed simultaneously. The
programming algorithm for the EEPROM Data memory is as follows (refer to Table 30-14 on page 190):

1. Load Command “Write EEPROM”.
2. Load EEPROM Page Buffer.
3. Program EEPROM Page. Wait after Instr. 2 until SDO goes high for the “Page Programming” cycle to finish.
4. Repeat 2 through 3 until the entire EEPROM is programmed or until all data has been programmed.
5. End Page Programming by Loading Command “No Operation”.

30.8.6 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to Table 30-14 on page 190):
1. Load Command "Read Flash".
2. Read Flash Low and High Bytes. The contents at the selected address are available at serial output SDO.

30.8.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to Table 30-14 on page 190):
1. Load Command “Read EEPROM”.
2. Read EEPROM Byte. The contents at the selected address are available at serial output SDO.

30.8.8 Programming and Reading the Fuse and Lock Bits

The algorithms for programming and reading the Fuse Low/High bits and Lock bits are shown in Table 30-14 on page 190.

30.8.9 Reading the Signature Bytes and Calibration Byte

The algorithms for reading the Signature bytes and Calibration byte are shown in Table 30-14 on page 190.

0 1 2 3

MSB

MSB

MSB

4 5 6 7 8 9 10

SDI

SII

SDO

SCI
189Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.8.10 Power-off sequence

Exit Programming mode by powering the device down, or by bringing RESET pin to 0V.

Table 30-14. High-voltage Serial Programming Instruction Set for Atmel® AVR MCU

Instruction
Instruction Format

Operation RemarksInstr.1/5 Instr.2/6 Instr.3 Instr.4

Chip Erase
SDI
SII
SDO

0_1000_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Load “Write Flash”
Command

SDI
SII
SDO

0_0001_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

Load Flash Page
Buffer

SDI
SII
SDO

0_ bbbb_bbbb _00
0_0000_1100_00
x_xxxx_xxxx_xx

0_eeee_eeee_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_dddd_dddd_00
0_0011_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1101_00
x_xxxx_xxxx_xx

SDI
SII
SDO

0_0000_0000_00
0_0111_1100_00
x_xxxx_xxxx_xx

Load Flash High
Address and
Program Page

SDI
SII
SDO

0_aaaa_aaaa_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Load “Read Flash”
Command

SDI
SII
SDO

0_0000_0010_00
0_0100_1100_00
x_xxxx_xxxx_xx

Read Flash Low
and High Bytes

SDI
SII
SDO

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_aaaa_aaaa_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
q_qqqq_qqqx_xx

SDI
SII
SDO

0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
p_pppp_pppx_xx

Load “Write
EEPROM”
Command

SDI
SII
SDO

0_0001_0001_00
0_0100_1100_00
x_xxxx_xxxx_xx

Load EEPROM
Page Buffer

SDI
SII
SDO

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_eeee_eeee_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1101_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Program EEPROM
Page

SDI
SII
SDO

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Write EEPROM
Byte

SDI
SII
SDO

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_eeee_eeee_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1101_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

SDI
SII
SDO

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Load “Read
EEPROM”
Command

SDI
SII
SDO

0_0000_0011_00
0_0100_1100_00
x_xxxx_xxxx_xx
190Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Note: 1. a = address high bits, b = address low bits, d = data in high bits, e = data in low bits, p = data out high bits, q = data out low
bits, x = don’t care, c = Lock Bit Byte, l = fuse low byte, h = fuse high byte.

Notes: 1. For page sizes less than 256 words, parts of the address (bbbb_bbbb) will be parts of the page address.
2. For page sizes less than 256 bytes, parts of the address (bbbb_bbbb) will be parts of the page address.
The EEPROM is written page-wise. But only the bytes that are loaded into the page are actually written to the EEPROM. Page-
wise EEPROM access is more efficient when multiple bytes are to be written to the same page. Note that auto-erase of
EEPROM is not available in High-voltage Serial Programming, only in SPI Programming.

Read EEPROM
Byte

SDI
SII
SDO

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_aaaa_aaaa_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00

q_qqqq_qqq0_00

Write Fuse High
Byte

SDI
SII
SDO

0_0100_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_hhhh_hhhh_00
0_0010_1100_11
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
x_xxxx_xxxx_xx

Wait after Instr. 4 until SDO
goes high. Write “0” to
program the Fuse Bits.

Write Fuse Low
Byte

SDI
SII
SDO

0_0100_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_IIII_IIII_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Wait after Instr. 4 until SDO
goes high. Write “0” to
program the Fuse bit.

Write Lock Bit Byte
SDI
SII
SDO

0_0010_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_cccc_cccc_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Wait after Instr. 4 until SDO
goes high. Write “0” to
program the Lock Bit.

Read Fuse High
Byte

SDI
SII
SDO

0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
h_hhhh_hhhx_xx

Reading “0” means the Fuse
bit is programmed.

Read Fuse Low
Byte

SDI
SII
SDO

0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00

I_IIII_IIIx_xx

Reading “0” means the Fuse
bit is programmed.

Read Lock Bit Byte
SDI
SII
SDO

0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
c_cccc_cccx_xx

Reading “0” means the Lock
bit is programmed.

Read Signature
Row Low Byte

SDI
SII
SDO

0_0000_1000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
q_qqqq_qqqx_xx

Repeats Instr 2 4 for each
signature low byte address.

Read Signature
Row High Byte

SDI
SII
SDO

0_0000_1000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_aaaa_aaaa_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
p_pppp_pppx_xx

Repeats Instr 2 4 for each
signature high byte address.

Load “No
Operation”
Command

SDI
SII
SDO

0_0000_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

Table 30-14. High-voltage Serial Programming Instruction Set for Atmel® AVR MCU (Continued)

Instruction
Instruction Format

Operation RemarksInstr.1/5 Instr.2/6 Instr.3 Instr.4
191Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

31. Electrical Characteristics AVR MCU
Unless otherwise noted all parameters in this section are valid for a supply voltage of 3.0V to 3.6V and a junction temperature
range from –40°C to +125°C. All voltages refer to pin GND = 0 if not otherwise specified.

31.1 Power Consumption Characteristics
TA= –40°C to 125°C unless otherwise noted

No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*

1.1

Active current

All I/O disabled. WUT, WDT,
Bandgap enabled 14.33MHz

VCC,
AVCC

4.5 5.5 6.5 mA A

1.2 All I/O disabled. WUT, WDT,
Bandgap enabled 1.79MHz 1.7 mA C

1.3
All I/O enabled, VADC (Batt channel)
and CADC 256x gain. 512kHz ADC
clock, WUT, WDT, Bandgap enabled

14.33MHz 6.0 7.2 9.0 mA A

1.4

Idle current

All I/O disabled. WUT, WDT,
Bandgap enabled, CLKDIV=1 14.33MHz 800 µA C

1.5 All I/O disabled. WUT, WDT,
Bandgap enabled 1.79MHz 500 800 1000 µA A

1.6
All I/O enabled, VADC (Batt channel)
and CADC 256x gain. 512kHz ADC
clock, WUT, WDT, Bandgap enabled

14.33MHz 1800 2600 3500 µA A

1.7 Reset current Device in Reset VCC,
AVCC 350 500 1000 µA A

1.8

Power Save current

WUT, WDT, Bandgap enabled

VCC,
AVCC

90 105 150

µA

A

1.9 CADC with 128kHz clock - 256x
gain, WUT, WDT, Bandgap enabled 200 450 650 A

1.10
VADC (Batt channel) and CADC
256x gain. 512kHz ADC clock, WUT,
WDT, Bandgap enabled

1400 C

1.11 Power Down current

WUT, WDT, Bandgap (BGSC = 011)
enabled 8 15 50 A

WUT, WDT, Bandgap (BGSC = 111)
enabled 0.3 40 A

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
192Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

31.2 Bandgap Curvature Compensated (BGCC)

31.2.1 DC Characteristics
No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*
2.1 Initial accuracy TA = 25°C VREF 1.097 1.1 1.103 V A
2.2 Temperature drift After 2 temp factory calibration VREF –20 ±5 +20 ppm/°C A

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

31.2.2 AC Characteristics
No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*

2.4 VREF startup time from
power-off state VREF = 0 - 1.1V, CREF = 1.0µF 2 5 ms C

2.5 VREF ripple, toff = 32ms Measured at 25°C with 10MΩ
load 5 10 mV C

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

31.2.3 Die Temperature Measurement
No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*

2.6 Measurement of internal
Temperature; accuracy

Temperature measurement
according to Section 27.3 on
page 161

±2 ±5 °C A

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
193Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

31.3 ADC Characteristics

31.3.1 Voltage ADC Characteristics - Operating Conditions
TA= –40°C to +125°C, VCC = 3V to 3.6V, VREF = 1.1V, unless otherwise noted.

No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*
3.1

FSR, Resolution and
Conversion rates

Full Scale Range 0 1.1 V D
3.2 Number of bits

(unsigned)
Instantaneous output 16

Bits
D

3.3 Accumulate output 16 17 D
3.4

1 LSB
Instantaneous output 16.8

µV
D

3.5 Accumulate output 16.8 D
3.6

Inst. output
conversion rate

No chopper normal mode 1000 8000

Hz

D
3.7 No chopper low-power mode 250 2000 D
3.8 Fast chopper normal mode 332 2667 D

3.9 Fast chopper low-power
mode 83 667 D

3.10 Slow chopper normal mode 1000 8000 D

3.11 Slow chopper low-power
mode 250 2000 D

3.12

Acc. output
conversion rate

No chopper normal mode 1.96 2000 D
3.13 No chopper low-power mode 0.49 500 D
3.14 Fast chopper normal mode 0.64 667 D

3.15 Fast chopper low-power
mode 0.16 167 D

3.16 Slow chopper normal mode 1.96 1333 D

3.17 Slow chopper low-power
mode 0.49 333 D

3.18

PV2/NV2

INL without
divider

Range 0V to 1V 0.008 0.03 %FSR C
Range 0.4V to 0.6V 0.008 0.01 %FSR C

3.19 INL incl divider Range 9.6V to 14.4V 0.003 0.006 %FSR C
3.20

Offset(1)

No chopper ±101 ±672 µV C
3.21 Fast chopper, IC output ±0 ±17 µV C
3.22 Slow chopper, AC ouput ±0 ±17 µV C
3.23

Offset drift(1)

No chopper ±0.2 ±0.5 µV/°C C
3.24 Fast chopper, IC output ±0 ±17 µV C
3.25 Slow chopper, AC ouput ±0 ±17 µV C

3.26
Gain drift

Including VREF drift, range
0V to 1V ±5 ±20 ppm/°C C

3.27 Including VREF drift, range
0.4V to 0.6V ±5 ±20 ppm/°C C

3.28 Equivalent input
impedance

Normal mode 100
MΩ

D
3.29 LP mode 60 D

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Note: 1. Measured in test mode with inputs shorted
194Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

3.30

ADC0/SGND;
ADC1/SGND

INL Range 0V to 1V 0.02 0.06 %FSR C
3.31

Offset
No chopper ±34 ±336 µV C

3.32 Fast chopper ±0 ±17 µV C
3.33 Slow chopper ±0 ±17 µV C
3.34

ADC0/SGND;
ADC1/SGND

Offset drift
No chopper ±0.3 ±0.8 µV/°C C

3.35 Fast chopper ±0 ±17 µV C
3.36 Slow chopper ±0 ±17 µV C

3.37
Gain drift

Including VREF drift, NOM
mode, range 0V to 1V ±5 ±25 ppm/°C C

3.38 Including VREF drift, LP
mode, range 0V to 1V ±5 ±25 ppm/°C C

3.39

VREF measurement
according to VDAC
diagnosis mode, see
Section 26.5 on
page 149

VADC reading –4% 0.55 +4% V A

3.40 Pull-up PV2/NV2
open diagnosis

Register ADCRE
VADPDM[1:0]=11

PV2,
NV 22 kΩ A

31.3.1 Voltage ADC Characteristics - Operating Conditions (Continued)
TA= –40°C to +125°C, VCC = 3V to 3.6V, VREF = 1.1V, unless otherwise noted.

No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Note: 1. Measured in test mode with inputs shorted
195Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

31.3.2 Current ADC Characteristics - Operating Conditions
TA= -40 to 125°C unless otherwise noted.

No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*

3.42

FSR, Resolution
and Conversion
rates

Full Scale
Range

After gain amplifier at ADC
input -660 660 mV D

3.43
Number of bits

Instantaneous output 16
Bits

D
3.44 Accumulate output 16 18 D
3.45

1 LSB referred
to 16-bit result

PGA gain = 4 5.035

µV

D
3.46 PGA gain = 8 2.5175 D
3.47 PGA gain = 16 1.2588 D
3.48 PGA gain = 32 0.6294 D
3.49 PGA gain = 64 0.3147 D
3.50 PGA gain = 128 0.1573 D
3.51 PGA gain = 256 0.0787 D
3.52

Inst. output
conversion
rate(1)

No chopper normal mode 1000 8000

Hz

D
3.53 No chopper low-power mode 250 2000 D
3.54 Fast chopper normal mode 332 2667 D

3.55 Fast chopper low-power
mode 83 667 D

3.56 Slow chopper normal mode 1000 8000 D

3.57 Slow chopper low-power
mode 250 2000 D

3.58

Acc. output
conversion
rate(1)

No chopper normal mode 1.96 2000 D
3.59 No chopper low-power mode 0.49 500 D
3.60 Fast chopper normal mode 0.64 667 D

3.61 Fast chopper low-power
mode 0.16 167 D

3.62 Slow chopper normal mode 1.96 1333 D

3.63 Slow chopper low-power
mode 0.49 333 D

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Notes: 1. Conversion rate scales proportionally to frequency in SlowRC oscillator

2. Measured in Power Save, 256x gain
3. Measured with PI-NI shorted
196Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

3.64

Accuracy

INL
90% FSR, 256x gain 0.15 0.3

%FSR
C

3.65 90% FSR, 4x gain 0.02 0.06 C
3.66

Offset (referred
to input)(2)(3)

No chopper ±35 ±150
µV

C
3.67 Fast chopper ±2.5 ±5 C
3.68 Slow chopper ±2.5 ±5 C
3.69 Offset drift

(referred
to input)(2)(3)

No chopper ±80 ±300
nV/°C

C
3.70 Fast chopper ±6 ±20 C
3.71 Slow chopper ±6 ±20 C

3.72
Uncompensated
gain error

Including VREF drift,
PGA gain = 4 0.05 0.1

%FSR
C

3.73 Including VREF drift,
PGA gain = 256 1.5 2 C

3.74
Gain drift

Including VREF drift,
PGA gain = 4 ±5 ±25

ppm/°C
C

3.75 Including VREF drift,
PGA gain = 256 ±10 ±50 C

3.76 Input
Impedance

Normal mode 100
kΩ

D
3.77 LP mode 60 D

3.78

vrefp_test
measurement
according to
Section 26.5 on
page 149

CADC reading –4% 0.33 +4% V A

3.79 Pull-up PI/NI open
diagnosis

Register ADCRD
CADPDM[1:0]=11

PI, NI 22 kΩ A

31.3.2 Current ADC Characteristics - Operating Conditions (Continued)
TA= -40 to 125°C unless otherwise noted.

No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Notes: 1. Conversion rate scales proportionally to frequency in SlowRC oscillator

2. Measured in Power Save, 256x gain
3. Measured with PI-NI shorted
197Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

31.4 Oscillator Characteristics
TA= -40 to 125°C, VCC = 3.3V unless otherwise noted.

No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*

4.1 Slow RC
Oscillator

Frequency Reference frequency:
Slow RCOSC –4% 128 +4% kHz A

4.2 Temperature drift Centered at 25°C –1 +1 % A

4.3

PLL

Frequency
multiplication factor 112 D

4.4 Startup time from
Pdown/Psave

Latency from module enabled
until first clock edge
(ref = 128kHz)

25 40 µs C

4.5 Frequency settling
time Setting to 99% of target 180 250 µs C

4.6 Ultra Low
Power RC
Oscillator

Frequency, initial
accuracy –20% 131 +20% kHz A

4.7 Temperature drift Centered at 25°C. VCC = 3.3V –5 +5 % A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

31.5 External Interrupt Characteristics
Asynchronous External Interrupt Characteristics

No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*

5.1 Pulse width for asynchronous external
interrupt tINT 500 2000 ns C

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
198Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

31.6 General I/O Lines Characteristics

31.6.1 Port A and B Characteristics
TA = -40 to 125°C, VCC = 3.3V (unless otherwise noted)

No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*

6.1 Input Low Voltage, Except RESET pin PA[1:0],
PB[7:0] VIL –0.5 0.3VCC

(1) V C

6.2 Input Low Voltage, RESET pin Reset VIL1 0.3VCC
(1) V C

6.3 Input High Voltage, Except RESET
pin

PA[1:0],
PB[7:0] VIH 0.6VCC

(2) VCC + 0.5 V C

6.4 Input High Voltage, RESET pin Reset VIH1 0.9VCC
(2) VCC + 0.5 V C

6.5 Output Low Voltage(3) IOL = 5mA PA[1:0],
PB[7:0] VOL 0.5 V A

6.6 Output High Voltage(4) IOH = 2 mA PA[1:0],
PB[7:0] VOH 2.3 V A

6.7 Input Leakage
Current I/O Pin

Pin low
(absolute value)

PA[1:0],
PB[7:0] IIL ±1 µA A

6.8 Input Leakage
Current I/O Pin

Pin high
(absolute value)

PA[1:0],
PB[7:0] IIH ±1 µA A

6.9 Reset Pull-up Resistor Reset RRST 30 60 kΩ A

6.10 I/O Pin Pull-up Resistor PA[1:0],
PB[7:0] RPU 20 50 kΩ A

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (5 mA at VCC = 3.3V) under steady state conditions (non-

transient), the following must be observed:
- The sum of all IOL should not exceed 20 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (2 mA at VCC = 3.3V) under steady state conditions (non-
transient), the following must be observed:
- The sum of all IOH should not exceed 2 mA.
199Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

31.7 SPI Timing Characteristics
See Figure 31-1 on page 200 and Figure 31-2 on page 201 for details.

Figure 31-1. SPI Interface Timing Requirements (Master Mode)

31.7.1 SPI Timing Parameters
No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*
7.1 SCK period Master See

ns

D

7.2 SCK high/low Master 50% duty D

7.3 Rise/Fall time Master 3.6 D

7.4 Setup Master 10 D

7.5 Hold Master 10 D

7.6 Out to SCK Master 0.5 × tsck D

7.7 SCK to out Master 10 D

7.8 SCK to out high Master 10 D

7.9 SS low to out Slave 15 D

7.10 SCK period Slave 4 × tck + D

7.11 SCK high/low(1) Slave 2 × tck + D

7.12 Rise/Fall time Slave 1.6 µs D

7.13 Setup Slave 10

ns

D

7.14 Hold Slave tck D

7.15 SCK to out Slave 15 D

7.16 SCK to SS high Slave 20 D

7.17 SS high to tri-state Slave 10 D

7.18 SS low to SCK Slave 20 D

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Note: 1. Refer to Section 30.6 “Serial Programming” on page 183 for serial programming requirements.

6

MSB

SS

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MISO
(Data Output)

MOSI
(Data Output)

MSB LSB

LSB...

...

4 5

87

1

2 2

3

200Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 31-2. SPI Interface Timing Requirements (Slave Mode)

31.8 Programming Characteristics

31.8.1 Serial Programming

Figure 31-3. Serial Programming Timing

Figure 31-4. Serial Programming Waveforms

9

MSB

SS

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(Data Output)

MISO
(Data Output)

MSB LSB

LSB...

...

13 14

1715

10 16

11 11

12

MOSI

SCK

MISO

tOVSH tSHOX

tSHSL

tSLSH

tSLIV

SERIAL DATA INPUT
(MOSI)

SERIAL DATA OUTPUT
(MISO)

SERIAL CLOCK INPUT
(SCK)

SAMPLE

MSB LSB

MSB LSB
201Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

31.8.2 High-voltage Serial Programming

Figure 31-5. High-voltage Serial Programming Timing

31.8.1.1Serial Programming Characteristics
TA = -10°C to 70°C, VCC = 3.0 - 5.5V (Unless Otherwise Noted)
No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*
8.1 Oscillator Frequency (Atmel AVR MCU) 1/tCLCL 0 4 MHz D
8.2 Oscillator Period (Atmel AVR MCU) tCLCL 250 ns D
8.3 SCK Pulse Width High tSHSL 2.2 tCLCL

(1) D
8.4 SCK Pulse Width Low tSLSH 2.2 tCLCL

(1) D
8.5 MOSI Setup to SCK High tOVSH tCLCL D
8.6 MOSI Hold after SCK High tSHOX 2 tCLCL D
8.7 SCK Low to MISO Valid tSLIV 15 ns D

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Note: 1. 2.2 tCLCL for fck < 12MHz, 3.3 tCLCL for fck ≥ 12MHz

SDI, SII

SCI

SDO

tIVSH tSHIX

tSHSL

tSLSH

tSHOV

31.8.2.1High-voltage Serial Programming Characteristics TA = 25°C ± 10%, VCC = 3.3V ± 10% (Unless otherwise
noted)

No. Parameters Test Conditions Pin Symbol Min Typ Max Unit Type*
8.8 SCI (PC0) Pulse Width High tSHSL 1/fck ns D
8.9 SCI (PC0) Pulse Width Low tSLSH 1/fck ns D

8.10 SDI (PB2), SII (PB3) Valid to SCI (PC0)
High tIVSH 50 ns D

8.11 SDI (PB2), SII (PB3) Hold after SCI
(PC0) High tSHIX 50 ns D

8.12 SCI (PC0) High to SDO (PB1) Valid tSHOV 16 ns D
8.13 Wait after Instr. 3 for Write Fuse Bits tWLWH_PFB 2.5 ms D
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
202Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

32. Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved – – – – – – – –
(0xFE) Reserved – – – – – – – –
(0xFD) Reserved – – – – – – – –
(0xFC) Reserved – – – – – – – –
(0xFB) Reserved – – – – – – – –
(0xFA) Reserved – – – – – – – –
(0xF9) Reserved – – – – – – – –
(0xF8) Reserved – – – – – – – –
(0xF7) Reserved – – – – – – – –
(0xF6) VADAC3 VADAC3[31:24] 158
(0xF5) VADAC2 VADAC2[23:16] 158
(0xF4) VADAC1 VADAC1[15:8] 158
(0xF3) VADAC0 VADAC0[7:0] 158
(0xF2) VADICH VADICH[15:8] 158
(0xF1) VADICL VADICL[7:0] 158
(0xF0) CADAC3 CADAC3[31:24] 159
(0xEF) CADAC2 CADAC2[23:16] 159
(0xEE) CADAC1 CADAC1[15:8] 159
(0xED) CADAC0 CADAC0[7:0] 159
(0xEC) CADICH CADICH[15:8] 159
(0xEB) CADICL CADICL[7:0] 159
(0xEA) CADRCLH CADRCLH[15:8] 157
(0xE9) CADRCLL CADRCLL[7:0] 157
(0xE8) ADIMR – – VADACIE VADICIE – CADRCIE CADACIE CADICIE 157
(0xE7) ADIFR – – VADACIF VADICIF – CADRCIF CADACIF CADICIF 156
(0xE6) ADCRE VADEN – VADREFS VADPDM1 VADPDM0 VAMUX2 VAMUX1 VAMUX0 155
(0xE5) ADCRD – – CADG2 CADG1 CADG0 CADPDM1 CADPDM0 CADDSEL 154
(0xE4) ADCRC CADEN – CADRCM1 CADRCM0 CADRCT3 CADRCT2 CADRCT1 CADRCT0 153
(0xE3) ADCRB – – – ADIDES1 ADIDES0 ADADES2 ADADES1 ADADES0 152
(0xE2) ADCRA – – – – ADPSEL ADCMS1 ADCMS0 CKSEL 151
(0xE1) ADSCSRB – VADICPS VADACRB VADICRB – CADICPS CADACRB CADICRB 150
(0xE0) ADSCSRA – – – – – SBSY SCMD1 SCMD0 149
(0xDF) Reserved – – – – – – – –
(0xDE) Reserved – – – – – – – –
(0xDD) Reserved – – – – – – – –
(0xDC) PBOV PBOVCE – – – PBOE3 – – PBOE0 89
(0xDB) Reserved – – – – – – – –
(0xDA) Reserved – – – – – – – –
(0xD9) Reserved – – – – – – – –
(0xD8) PLLCSR – – SWEN LOCK – – PLLCIF PLLCIE 51
(0xD7) Reserved – – – – – – – –
(0xD6) Reserved – – – – – – – –
(0xD5) Reserved – – – – – – – –
(0xD4) BGLR – – – – – – BGPLE BPGL 164
(0xD3) BGCRA BGCN[7:0] 163
(0xD2) BGCRB BGCL[7:0] 163
(0xD1) BGCSRA – – – – – BGSC[2:0] 163
(0xD0) Reserved – – – – – – – –
(0xCF) Reserved – – – – – – – –
(0xCE) Reserved – – – – – – – –
(0xCD) Reserved – – – – – – – –

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O reg-
isters as data space using LD and ST instructions, $20 must be added to these addresses. The Atmel AVR MCU is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
203Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

(0xCC) Reserved – – – – – – – –
(0xCB) Reserved – – – – – – – –
(0xCA) LINDAT LDATA[7:0] 137
(0xC9) LINSEL – – – – LAINC LINDX[2:0] 137
(0xC8) LINIDR LP1 LP0 LID5/LIDL1 LID4/LIDL0 LID[3:0] 136
(0xC7) LINLDR LTXDL[7:0] 136
(0xC6) LINBRH – – – – LDIV[11:8] 135
(0xC5) LINBRL LDIV[7:0] 135
(0xC4) LINBTR LDISR – LBT[5:0] 135
(0xC3) LINERR LABORT LTOERR LOVERR LFERR LSERR LPERR LCERR LBERR 134
(0xC2) LINENIR – – – – LENERR LENIDOK LENTXOK LENRXOK 134
(0xC1) LINSIR LIDST[2:0] LBUSY LERR LIDOK LTXOK LRXOK 133
(0xC0) LINCR LSWRES LIN13 LCONF[1:0] LENA LCMD[2:0] 132
(0xBF) Reserved – – – – – – – –
(0xBE) Reserved – – – – – – – –
(0xBD) Reserved – – – – – – – –
(0xBC) Reserved – – – – – – – –
(0xBB) Reserved – – – – – – – –
(0xBA) Reserved – – – – – – – –
(0xB9) Reserved – – – – – – – –
(0xB8) Reserved – – – – – – – –
(0xB7) Reserved – – – – – – –
(0xB6) Reserved – – – – – – – –
(0xB5) Reserved – – – – – – – –
(0xB4) Reserved – – – – – – – –
(0xB3) Reserved – – – – – – – –
(0xB2) Reserved – – – – – – – –
(0xB1) Reserved – – – – – – – –
(0xB0) Reserved – – – – – – – –
(0xAF) Reserved – – – – – – – –
(0xAE) Reserved – – – – – – – –
(0xAD) Reserved – – – – – – – –
(0xAC) Reserved – – – – – – – –
(0xAB) Reserved – – – – – – – –
(0xAA) Reserved – – – – – – – –
(0xA9) Reserved – – – – – – – –
(0xA8) Reserved – – – – – – – –
(0xA7) Reserved – – – – – – – –
(0xA6) Reserved – – – – – – – –
(0xA5) Reserved – – – – – – – –
(0xA4) Reserved – – – – – – – –
(0xA3) Reserved – – – – – – – –
(0xA2) Reserved – – – – – – – –
(0xA1) Reserved – – – – – – – –
(0xA0) Reserved – – – – – – – –
(0x9F) Reserved – – – – – – – –
(0x9E) Reserved – – – – – – – –
(0x9D) Reserved – – – – – – – –
(0x9C) Reserved – – – – – – – –
(0x9B) Reserved – – – – – – – –
(0x9A) Reserved – – – – – – – –

32. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O reg-
isters as data space using LD and ST instructions, $20 must be added to these addresses. The Atmel AVR MCU is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
204Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

(0x99) Reserved – – – – – – – –
(0x98) Reserved – – – – – – – –
(0x97) Reserved – – – – – – – –
(0x96) Reserved – – – – – – – –
(0x95) Reserved – – – – – – – –
(0x94) Reserved – – – – – – – –
(0x93) Reserved – – – – – – – –
(0x92) Reserved – – – – – – – –
(0x91) Reserved – – – – – – – –
(0x90) Reserved – – – – – – – –
(0x8F) Reserved – – – – – – – –
(0x8E) Reserved – – – – – – – –
(0x8D) Reserved – – – – – – – –
(0x8C) Reserved – – – – – – – –
(0x8B) Reserved – – – – – – – –
 (0x8A) Reserved – – – – – – – –
(0x89) OCR1B Timer/Counter1 – Output Compare Register B 106
(0x88) OCR1A Timer/Counter1 – Output Compare Register A 106
(0x87) Reserved – – – – – – – –
(0x86) Reserved – – – – – – – –
(0x85) TCNT1H Timer/Counter1 (8 Bit) High Byte 106
(0x84) TCNT1L Timer/Counter1 (8 Bit) Low Byte 105
(0x83) Reserved – – – – – – – –
(0x82) TCCR1C – – – – – – ICS11 ICS10 105
(0x81) TCCR1B – – – – – CS12 CS11 CS10 92
(0x80) TCCR1A TCW1 ICEN1 ICNC1 ICES1 – – – WGM10 104
(0x7F) Reserved – – – – – – – –
(0x7E) DIDR0 – – – – – – PA1DID PA0DID 160
(0x7D) Reserved – – – – – – – –
(0x7C) Reserved – – – – – – – –
(0x7B) Reserved – – – – – – – –
(0x7A) Reserved – – – – – – – –
(0x79) Reserved – – – – – – – –
(0x78) Reserved – – – – – – – –
(0x77) Reserved – – – – – – – –
(0x76) Reserved – – – – – – – –
(0x75) Reserved – – – – – – – –
(0x74) Reserved – – – – – – – –
(0x73) Reserved – – – – – – – –
(0x72) Reserved – – – – – – – –
(0x71) Reserved – – – – – – – –
(0x70) Reserved – – – – – – – –
(0x6F) TIMSK1 – – – – ICIE1 OCIE1B OCIE1A TOIE1 106
(0x6E) TIMSK0 – – – – ICIE0 OCIE0B OCIE0A TOIE0 106
(0x6D) Reserved – – – – – – – –
(0x6C) PCMSK1 PCINT[9:2] 77
(0x6B) PCMSK0 – – – – – – PCINT[1:0] 77
(0x6A) Reserved – – – – – – – –
(0x69) EICRA – – – – – – ISC01 ISC00 75
(0x68) PCICR – – – – – – PCIE1 PCIE0 76
(0x67) SOSCCALB Slow RC Oscillator Calibration Register B 51

32. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O reg-
isters as data space using LD and ST instructions, $20 must be added to these addresses. The Atmel AVR MCU is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
205Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

(0x66) SOSCCALA Slow RC Oscillator Calibration Register A 51
(0x65) Reserved – – – – – – – –
(0x64) PRR0 – – PRLIN PRSPI PRTIM1 PRTIM0 57
(0x63) WDTCLR – – – – – WDCL1 WDCL0 WDCLE
(0x62) WUTCSR WUTIF WUTIE – WUTR WUTE WUTP2 WUTP1 WUTP0
(0x61) CLKPR CLKPCE – – – – – CLKPS1 CLKPS0 52
(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 65

0x3F (0x5F) SREG I T H S V N Z C 36
0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 38
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 38
0x3C (0x5C) Reserved – – – – – – – –
0x3B (0x5B) Reserved – – – – – – – –
0x3A (0x5A) Reserved – – – – – – – –
0x39 (0x59) Reserved – – – – – – – –
0x38 (0x58) Reserved – – – – – – – –
0x37 (0x57) SPMCSR – – SIGRD CTPB RFLB PGWRT PGERS SPMEN 178
0x36 (0x56) Reserved – – – – – – – –
0x35 (0x55) MCUCR – – CKOE PUD – – IVSEL IVCE 88/52
0x34 (0x54) MCUSR – – – OCDRF WDRF BODRF EXTRF PORF 65
0x33 (0x53) SMCR – – – – SM[2:0] SE 56
0x32 (0x52) Reserved – – – – – – – –
0x31 (0x51) DWDR debugWIRE Data Register 166
0x30 (0x50) Reserved – – – – – – – –
0x2F (0x4F) TCCR0C – – – – – – ICS01 ICS00 105
0x2E (0x4E) SPDR SPI Data Register 115
0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 115
0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 114
0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 47
0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 47
0x29 (0x49) OCR0B Timer/Counter0 Output Compare Register B 106
0x28 (0x48) OCR0A Timer/Counter0 Output Compare Register A 106
0x27 (0x47) TCNT0H Timer/Counter0 (8 Bit) High Byte 106
0x26 (0x46) TCNT0L Timer/Counter0 (8 Bit) Low Byte 105
0x25 (0x45) TCCR0B – – – – – CS02 CS01 CS00 92
0x24 (0x44) TCCR0A TCW0 ICEN0 ICNC0 ICES0 – – – WGM00 104
0x23 (0x43) GTCCR TSM – – – – – – PSRSYNC
0x22 (0x42) EEARH – – – – – – EEPROM High byte 44
0x21 (0x41) EEARL High Byte only 1 bit 44
0x20 (0x40) EEDR EEPROM Data Register 44
0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 44
0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 47
0x1D (0x3D) EIMSK – – – – – – – INT0 75
0x1C (0x3C) EIFR – – – – – – – INTF0 76
0x1B (0x3B) PCIFR – – – – – – PCIF1 PCIF0 76
0x1A (0x3A) Reserved – – – – – – – –
0x19 (0x39) Reserved – – – – – – – –
0x18 (0x38) Reserved – – – – – – – –
0x17 (0x37) Reserved – – – – – – – –
0x16 (0x36) TIFR1 – – – – ICF1 OCF1B OCF1A TOV1 107
0x15 (0x35) TIFR0 – – – – ICF0 OCF0B OCF0A TOV0 107
0x14 (0x34) Reserved – – – – – – – –

32. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O reg-
isters as data space using LD and ST instructions, $20 must be added to these addresses. The Atmel AVR MCU is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
206Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

0x13 (0x33) Reserved – – – – – – – –
0x12 (0x32) Reserved – – – – – – – –
0x11 (0x31) Reserved – – – – – – – –
0x10 (0x30) Reserved – – – – – – – –
0x0F (0x2F) Reserved – – – – – – – –
0x0E (0x2E) Reserved – – – – – – – –
0x0D (0x2D) Reserved – – – – – – – –
0x0C (0x2C) Reserved – – – – – – – –
0x0B (0x2B) Reserved – – – – – – – –
0x0A (0x2A) Reserved – – – – – – – –
0x09 (0x29) Reserved – – – – – – – –
0x08 (0x28) Reserved – – – – – – – –
0x07 (0x27) Reserved – – – – – – – –
0x06 (0x26) Reserved – – – – – – – –
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 88
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 88
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 89
0x02 (0x22) PORTA – – – – – – PORTA1 PORTA0 88
0x01 (0x21) DDRA – – – – – – DDA1 DDA0 88
0x00 (0x20) PINA – – – – – – PINA1 PINA0 88

32. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O reg-
isters as data space using LD and ST instructions, $20 must be added to these addresses. The Atmel AVR MCU is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
207Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

33. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← 0xFF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
CALL k Direct Subroutine Call PC ← k None 4
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3
208Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2
BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow. V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1

33. Instruction Set Summary (Continued)
Mnemonics Operands Description Operation Flags #Clocks
209Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
LPM Rd, Z Load Program Memory Rd ← (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3
SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS
NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep
function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1
BREAK Break For On-chip Debug Only None N/A

MATHS EXTENSION INSTRUCTIONS
ADD.L Rd.I, Rs.I 32-bit Add Rd.I ← Rd.I + Rs.I 1 1
ADC.L Rd.I, Rs.I 32-bit Add with Carry Rd.I ← Rd.I + Rs.I + C 1 1

33. Instruction Set Summary (Continued)
Mnemonics Operands Description Operation Flags #Clocks
210Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

SUB.L Rd.I, Rs.I 32-bit Substract Rd.I ← Rd.I − Rs.I 1 1
SBC.L Rd.I, Rs.I 32-bit Substract with Carry Rd.I ← Rd.I − Rs.I − C 1 1
CP.L Rd.I, Rs.I 32-bit Substract Rd.I − Rd.I 1 1

CPC.L Rd.I, Rs.I 32-bit Substract with Carry Rd.I − Rd.I − Rs.I 1 1
RSUB.L Rd.I, Rs.I 32-bit Reverse Substract Rs.I ← Rd.I − Rs.I 1 1
RSBC.L Rd.I, Rs.I 32-bit Reverse Substract with Carry Rs.I ← Rd.I − Rs.I − C 1 1

DIVINIT.L Rd.I (Divider), type (optional) 32-bit Div initialization, type selects shadow
reg Dividend ← Rd.I, Rd.I ← Dividend 1 1

DIV.L Rd.I (Remainder), Rs.I
(Divisor) 32-bit Division (Iterative) Rd.I ← Divider / Divisor (Iterative) 1 1

DIV.LL Rd.II (Remainder), Rs.II
(Divisor) 64-bit Division (Iterative) Rd.II ← Divider / Divisor (Iterative) 1 2

MOV.L Rd.I, Rs.I 32-bit Moy Rd.I ← Rd.I 1 1
MOV.LL Rd.II, Rs.II 64-bit Moy Rd.II ← Rd.II 1 2
TST.L Rd.I 32-bit Test for zero or neg. Rd.I ← Rd.I • Rd.I 1 1

TSL:LL Rd.II 64-bit Test for zero or neg. Rd.II ← Rd.II • Rd.II 1 2

LSR.L Rd.I 32-bit Logical shift right Rd.I(n) ← Rd.I(n+1), Rd.I(31) ← 0, C ←
Rd.I(0) 1 1

LSR.LL Rd.II 64-bit Logical shift right Rd.II(n) ← Rd.II(n+1), Rd.II(31) ← 0, C
← Rd.II(0) 1 2

ASR.L Rd.I 32-bit Arithmetic shift right Rd.I(n) ← Rd.I(n+1), n = 0...30, C ←
Rd.I(0) 1 1

ASR.LL Rd.II 64-bit Arithmetic shift right Rd.II(n) ← Rd.II(n+1), n = 0...30, C ←
Rd.II(0) 1 2

ROR.L Rd.I 32-bit Rotate right Rd.I(31) ← C, Rd.I(n) ← Rd.I(n+1), C ←
Rd.I(0) 1 1

ROR.LL Rd.II 64-bit Rotate right Rd.II(31) ← C, Rd.II(n) ← Rd.II(n+1), C
← Rd.II(0) 1 2

NEG.L Rd.I 32-bit Two’s Complement Rd.I ← $0 − Rd.I 1 1
NEG.LL Rd.II 64-bit Two’s Complement Rd.II ← $0 − Rd.II 1 2

NEGTS.L Rd.I 32-bit Two’s Complement if T set Rd.I ← $0 − Rd.I 1 1
NEGTS.LL Rd.II 64-bit Two’s Complement if T set Rd.II ← $0 − Rd.II 1 2

ABS.L Rd.I 32-bit Absolute value T ← Rd.I[31], Rd.I ← ABS(Rd.I) 1 1
ABS.LL Rd.II 64-bit Absolute value T ← Rd.II[63], Rd.II ← ABS(Rd.II) 1 2

ABSXT.L Rd.I 32-bit Absolute value, sign xor T T ← T ∧ Rd.I[31], Rd.I ← ABS(Rd.I) 1 1
ABSXT.LL Rd.II 64-bit Absolute value, sign xor T T ← T ∧ Rd.II[63], Rd.II ← ABS(Rd.II) 1 2

MUL.W Rd.w, Rx.w, Ry.w 16-bit Multiplication with 16-bit result Rd.w ← Rx.w * Ry.w (UU) 2 3
MULL.W Rd.I, Rx.w, Ry.w 16-bit Multiplication with 32-bit result Rd.I ← Rx.w * Ry.w (UU) 2 3

MULLS.W Rd.I, Rx.w, Ry.w 16-bit Signed Multiplication with 32-bit result Rd.I ← Rx.w * Ry.w (SS) 2 4

MULLSU.W Rd.I, Rx.w, Ry.w 16-bit Signed Unsigned Multiplication with
32-bit result Rd.I ← Rx.w * Ry.w (SU) 2 4

MUL.L Rd.I, Rx.I, Ry.I 32-bit Multiplication with 32-bit result Rd.I ← Rx.I * Ry.I (UU) 2 5
MULL.L RdH.I, RdL.I, Rx.I, Ry.I 32-bit Multiplication with 64-bit result RdH.I, RdL.I ← Rx.I * Ry.I (UU) 2 6

MULLS.L RdH.I, RdL.I, Rx.I, Ry.I 32-bit Signed Multiplication with 64-bit result RdH.I, RdL.I ← Rx.I * Ry.I (SS) 2 6

MULSU.L RdH.I, RdL.I, Rx.I, Ry.I 32-bit Signed Unsigned Multiplication with
64-bit result RdH.I, RdL.I ← Rx.I * Ry.I (SU) 2 6

MUL.LL RdH.I, RdL.I, Rx.II, Ry.II,
RdH.I, RdL.I, != Rxy.II 64-bit Multiplication with 64-bit result

RdH.I, RdL.I ← Rx.II * Ry.II (UU)
2 12

33. Instruction Set Summary (Continued)
Mnemonics Operands Description Operation Flags #Clocks
211Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

34. Operating Circuit

Figure 34-1. Operating Circuit without Watchdog

C17C3

C13

C15

R1

C13

C11

C12

C9

C4

C6

C10

C7

C5

R7

VCC

RESET/DW

PB7/MISO

PB6/MOSI

PB5/SCK

Programming
Debug

PB4

PB3/TXD

PB2

PB1/RXD

PB0

EN

RXD

DIV/ON

TXD

NRES

SP_MODE

LIN

C16

R2

R3 C8

R5 R4

R6

D1

GND

GND AVCC NI PI PA1 PA0

VREF

C1

VCC

PV1

NV1

VBATT

PVREG VREG GND

ATmega32HVE2/64HVE2

GND

VS MODE NTRIG TM

WD_OSC

VREFGND

NV2

PV2

GND

UBATLIN
212Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 34-2. Operating Circuit with Watchdog

C17C3

C13

C15

R1

C13

C11

C12

C9

C4

C6

C10

C7

C5

R7

VCC

RESET/DW

PB7/MISO

PB6/MOSI

PB5/SCK

Programming
Debug

PB4

PB3/TXD

PB2

PB1/RXD

PB0

EN

RXD

DIV/ON

TXD

NRES

SP_MODE

LIN

C16

R2

R3 C8

R5 R4

D1

GND VREF

C1

VCC

PV1

NV1

VBATT

PVREG VREG GND

ATmega32HVE2/64HVE2

GND

VS MODE NTRIG TM

WD_OSC

VREFGND

NV2

PV2

GND

UBATLIN

GND AVCC NI PI PA1 PA0
213Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

35. Ordering Information
Extended Type Number Package MOQ
ATmega32HVE2-PLPW QFN48, 7 × 7 1,000 pieces
ATmega32HVE2-PLQW QFN48, 7 × 7 4,000 pieces
ATmega64HVE2-PLPW QFN48, 7 × 7 1,000 pieces
ATmega64HVE2-PLQW QFN48, 7 × 7 4,000 pieces
214Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

36. Packaging Information

36.1 Markings
As a minimum, the devices will be marked with the following:
● Date code (year and week number)
● Atmel® part number

Package Drawing Contact:
packagedrawings@atmel.com

GPC DRAWING NO. REV. TITLE

6.543-5130.01-4 3

09/07/11

Package: VQFN_7x7_48L
Exposed pad 5.6x5.6

COMMON DIMENSIONS
(Unit of Measure = mm)

MIN NOM NOTEMAXSymbol

Standard Singulation process

Dimensions in mm

specifications
according to DIN
technical drawings

0.02 0.050.0A1

7 7.16.9E

0.23 0.30.16b
0.5 BSCe

0.4 0.50.3L
5.6 5.755.45E2

5.6 5.755.45D2
7 7.16.9D

0.2 0.250.15A3

0.9 10.8A

Top View

D

48
1

12

PIN 1 ID

E

Side View A3

A

A1

b

L

A (10:1)

Bottom View

e

D2

48 37

13

1

12
24

25

36

E2

A

215Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

37. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this
document.

Revision No. History

8096C-AVR-01/13 • Section 26.5 “Diagnosis Mode” on page 149 updated

8096B-AVR-11/12
• Section 27.3 “VTEMPBASE and VTEMPSLOPE” on page 161 updated
• Section 29.8.9 “Reading the Signature Row from Software” on page 173 updated
216Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Roa
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Building
1-6-4 Osaki
Shinagawa-ku, Tokyo 141-0032
JAPAN
Tel: (+81) (3) 6417-0300
Fax: (+81) (3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 8096C–AVR–01/13

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	Features
	1. Description
	2. Pin Configurations
	2.1 Pin Descriptions
	2.1.1 VCC
	2.1.2 AVCC
	2.1.3 VREF
	2.1.4 VREFGND
	2.1.5 GND
	2.1.6 Port A (PA1..PA0)
	2.1.7 Port B (PB7..0)
	2.1.8 PV2/NV2
	2.1.9 PI/NI
	2.1.10 RESET/dw
	2.1.11 VS
	2.1.12 VREG
	2.1.13 PVREG
	2.1.14 LIN
	2.1.15 TXD
	2.1.16 RXD
	2.1.17 EN
	2.1.18 MODE
	2.1.19 TM
	2.1.20 NRES
	2.1.21 WD_OSC
	2.1.22 NTRIG
	2.1.23 DIV_ON
	2.1.24 VBATT
	2.1.25 PV1
	2.1.26 SP_MODE
	2.1.27 NV1
	2.1.28 NC

	3. Absolute Maximum Ratings
	4. Thermal Characteristics
	Features
	5. Description
	6. Functional Description
	6.1 Pin Functions
	6.2 Physical Layer Compatibility
	6.3 Wake-u Events from Sleep or Silent Mode
	6.4 Ground Shift
	6.5 TXD Dominant Time-out Function

	7. Modes of Operation
	7.1 Normal Mode
	7.2 Silent Mode
	7.3 Sleep Mode
	7.4 Sleep or Silent Mode: Behavior at a Floating LIN-bus or a Short Circuited LIN to GND
	7.5 Fail-safe Mode
	7.6 Unpowered Mode
	7.7 High-speed Mode

	8. Wake-up Scenarios from Silent or Sleep Mode
	8.1 Remote Wake-up via Dominant Bus State
	8.2 Wake-up Source Recognition
	8.3 Fail-safe Features
	8.4 Voltage Regulator

	9. Watchdog
	9.1 Typical Timing Sequence with RWD_OSC = 51kW
	9.2 Worst Case Calculation with RWD_OSC = 51kW

	10. Electrical Characteristics LIN SBC
	Features
	11. Overview
	12. About Code Examples
	13. AVR CPU Core
	13.1 Overview
	13.2 ALU – Arithmetic Logic Unit
	13.3 Status Register
	13.3.1 SREG – AVR Status Register

	13.4 General Purpose Register File
	13.4.1 The X-register, Y-register, and Z-register

	13.5 Stack Pointer
	13.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low

	13.6 Instruction Execution Timing
	13.7 Reset and Interrupt Handling
	13.7.1 Interrupt Response Time

	14. AVR Memories
	14.1 Overview
	14.2 In-System Reprogrammable Flash Program Memory
	14.3 SRAM Data Memory
	14.3.1 Data Memory Access Times

	14.4 EEPROM Data Memory
	14.4.1 EEPROM Read/Write Access

	14.5 I/O Memory
	14.5.1 General Purpose I/O Registers

	14.6 Register Description
	14.6.1 EEARH and EEARL– The EEPROM Address Register High and Low
	14.6.2 EEDR – The EEPROM Data Register
	14.6.3 EECR – The EEPROM Control Register
	14.6.4 GPIOR2 – General Purpose I/O Register 2
	14.6.5 GPIOR1 – General Purpose I/O Register 1
	14.6.6 GPIOR0 – General Purpose I/O Register 0

	15. System Clock and Clock Options
	15.1 Clock Systems and their Distribution
	15.1.1 CPU Clock – clkCPU
	15.1.2 I/O Clock – clkI/O
	15.1.3 Flash Clock – clkFLASH
	15.1.4 ADC Clock – clkADC
	15.1.5 Watchdog Timer and Wake-up Timer Clock – clkWDT/clkWUT

	15.2 Clock Sources
	15.2.1 PLL
	15.2.2 Slow RC Oscillator
	15.2.3 Ultra Low Power RC Oscillator

	15.3 Clock Output
	15.4 System Clock Prescaler
	15.5 ADC Clock Prescaler
	15.6 Register Description
	15.6.1 SOSCCALA – Slow RC Oscillator Calibration Register A
	15.6.2 SOSCCALB – Slow RC Oscillator Calibration Register B
	15.6.3 PLLCSR – PLL Control and Status Register
	15.6.4 MCUCR – MCU Control Register
	15.6.5 CLKPR – Clock Prescale Register

	16. Power Management and Sleep Modes
	16.1 Sleep Modes
	16.2 Idle Mode
	16.3 Power-save Mode
	16.4 Power-down Mode
	16.5 Power Reduction Register
	16.6 Minimizing Power Consumption
	16.6.1 Wake-up Timer
	16.6.2 Watchdog Timer
	16.6.3 Port Pins
	16.6.4 On-chip Debug System
	16.6.5 Voltage ADC
	16.6.6 Current ADC
	16.6.7 PLL
	16.6.8 Bandgap Voltage Reference

	16.7 Register Description
	16.7.1 SMCR – Sleep Mode Control Register
	16.7.2 PRR0 – Power Reduction Register 0

	17. System Control and Reset
	17.1 Resetting the AVR
	17.2 Reset Sources
	17.2.1 Power-on Reset
	17.2.2 External Reset
	17.2.3 Watchdog Reset
	17.2.4 Brown-out Detection

	17.3 Watchdog Timer
	17.3.1 Features
	17.3.2 Overview

	17.4 Register Description
	17.4.1 MCUSR – MCU Status Register
	17.4.2 WDTCSR – Watchdog Timer Control Register
	17.4.3 WDCLR - Watchdog Timer Configuration Lock Register

	18. Wake-up Timer
	18.1 Overview
	18.2 Register Description
	18.2.1 WUTCSR – Wake-up Timer Control and Status Register

	19. Interrupts
	19.1 Overview
	19.2 Interrupt Vectors in Atmel AVR MCU
	19.3 Moving Interrupts Between Application and Boot Space
	19.4 Register Description
	19.4.1 MCUCR – MCU Control Register

	20. External Interrupts
	20.1 Overview
	20.2 Pin Change Interrupt Timing
	20.3 Register Description
	20.3.1 EICRA – External Interrupt Control Register A
	20.3.2 EIMSK – External Interrupt Mask Register
	20.3.3 EIFR – External Interrupt Flag Register
	20.3.4 PCICR – Pin Change Interrupt Control Register
	20.3.5 PCIFR – Pin Change Interrupt Flag Register
	20.3.6 PCMSK1 – Pin Change Mask Register 1
	20.3.7 PCMSK0 – Pin Change Mask Register 0

	21. I/O-Ports
	21.1 Overview
	21.2 Ports as General Digital I/O
	21.2.1 Configuring the Pin
	21.2.2 Toggling the Pin
	21.2.3 Switching Between Input and Output
	21.2.4 Reading the Pin Value
	21.2.5 Digital Input Enable and Sleep Modes
	21.2.6 Unconnected Pins

	21.3 Alternate Port Functions
	21.3.1 Alternate Functions of Port A
	21.3.2 Alternate Functions of Port B

	21.4 Register Description
	21.4.1 MCUCR – MCU Control Register
	21.4.2 PORTA – Port A Data Register
	21.4.3 DDRA – Port A Data Direction Register
	21.4.4 PINA – Port A Input Pins Address
	21.4.5 PORTB – Port B Data Register
	21.4.6 DDRB – Port B Data Direction Register
	21.4.7 PINB – Port B Input Pins Address
	21.4.8 PBOV – Port B Override

	22. Timer/Counter0 and Timer/Counter1 Prescalers
	22.1 Overview
	22.1.1 Internal Clock Source
	22.1.2 Prescaler Reset

	22.2 External Clock Source
	22.3 Register Description
	22.3.1 TCCRnB – Timer/Counter n Control Register B
	22.3.2 General Timer/Counter Control Register – GTCCR

	23. Timer/Counter(T/C0, T/C1)
	23.1 Features
	23.2 Overview
	23.2.1 Registers
	23.2.2 Definitions

	23.3 Timer/Counter Clock Sources
	23.4 Counter Unit
	23.5 Modes of Operation
	23.5.1 Normal 8-bit Mode
	23.5.2 Clear Timer on Compare Match (CTC) 8-bit Mode
	23.5.3 16-bit Mode
	23.5.4 Clear Timer on Compare Match (CTC) 16-bit Mode
	23.5.5 8-bit Input Capture Mode
	23.5.6 16-bit Input Capture Mode

	23.6 Input Capture Unit
	23.6.1 Input Capture Trigger Source
	23.6.2 Noise Canceler
	23.6.3 Using the Input Capture Unit

	23.7 Output Compare Unit
	23.7.1 Compare Match Blocking by TCNT0 Write
	23.7.2 Using the Output Compare Unit

	23.8 Timer/Counter Timing Diagrams
	23.9 Accessing Registers in 16-bit Mode
	23.9.1 Reusing the Temporary High Byte Register

	23.10 Register Description
	23.10.1 TCCRnA – Timer/Counter n Control Register A
	23.10.2 TCCRnC – Timer/Counter n Control Register C
	23.10.3 TCNTnL – Timer/Counter n Register Low Byte
	23.10.4 TCNTnH – Timer/Counter n Register High Byte
	23.10.5 OCRnA – Timer/Counter n Output Compare Register A
	23.10.6 OCRnB – Timer/Counter n Output Compare Register B
	23.10.7 TIMSKn – Timer/Counter n Interrupt Mask Register
	23.10.8 TIFRn – Timer/Counter n Interrupt Flag Register

	24. SPI – Serial Peripheral Interface
	24.1 Features
	24.2 Overview
	24.3 SS Pin Functionality
	24.3.1 Slave Mode
	24.3.2 Master Mode

	24.4 Data Modes
	24.5 Register Description
	24.5.1 SPCR – SPI Control Register
	24.5.2 SPSR – SPI Status Register
	24.5.3 SPDR – SPI Data Register

	25. LIN/UART
	25.1 Features
	25.2 Overview
	25.3 LIN Features
	25.4 UART Features
	25.5 LIN Protocol
	25.5.1 Master and Slave
	25.5.2 Frames
	25.5.3 Data Transport
	25.5.4 Schedule Table
	25.5.5 Compatibility with LIN 1.3

	25.6 LIN / UART Controller
	25.6.1 LIN Overview
	25.6.2 UART Overview
	25.6.3 LIN/UART Controller Structure
	25.6.4 LIN/UART Command Overview
	25.6.5 Enable/Disable
	25.6.6 LIN Commands
	25.6.6.1 Rx Header/LIN Abort Function
	25.6.6.2 Tx Header Function
	25.6.6.3 Rx and TX Response Functions
	25.6.6.4 Handling Data of LIN response

	25.6.7 UART Commands
	25.6.7.1 Data Handling
	25.6.7.2 Rx Service
	25.6.7.3 Tx Service

	25.7 LIN / UART Description
	25.7.1 Reset
	25.7.2 LIN Protocol Selection
	25.7.3 Configuration
	25.7.4 Busy Signal
	25.7.4.1 Busy Signal in LIN Mode
	25.7.4.2 Busy Signal in UART Mode

	25.7.5 Bit Timing
	25.7.5.1 Baud rate Generator
	25.7.5.2 Re-synchronization in LIN Mode
	25.7.5.3 Handling LBT[5..0]

	25.7.6 Data Length
	25.7.6.1 Data Length in LIN 2.1
	25.7.6.2 Data Length in LIN 1.3
	25.7.6.3 Data Length in Rx Response
	25.7.6.4 Data Length in Tx Response
	25.7.6.5 Data Length after Error
	25.7.6.6 Data Length in UART Mode

	25.7.7 xxOK Flags
	25.7.8 xxERR Flags
	25.7.9 Frame Time Out
	25.7.10 Checksum
	25.7.11 Interrupts
	25.7.12 Message Filtering
	25.7.13 Data Management
	25.7.13.1 LIN FIFO Data Buffer
	25.7.13.2 UART Data Register

	25.8 LIN / UART Register Description
	25.8.1 LINCR – LIN Control Register
	25.8.2 LINSIR – LIN Status and Interrupt Register
	25.8.3 LINENIR – LIN Enable Interrupt Register
	25.8.4 LINERR – LIN Error Register
	25.8.5 LINBTR – LIN Bit Timing Register
	25.8.6 LINBRR – LIN Baud Rate Register
	25.8.7 LINDLR – LIN Data Length Register
	25.8.8 LINIDR – LIN Identifier Register
	25.8.9 LINSEL – LIN Data Buffer Selection Register
	25.8.10 LINDAT – LIN Data Register

	26. ADC - Analog to Digital Converter
	26.1 Features
	26.2 Overview
	26.3 Operation
	26.3.1 Delta Sigma Modulator
	26.3.2 Programmable Decimation Filters
	26.3.3 Programmable Gain
	26.3.4 Programmable Chopper Control
	26.3.5 Programmable Regulator Current Comparator
	26.3.6 Conversion Result

	26.4 Configuration and Usage
	26.4.1 Synchronization of Configuration Settings
	26.4.2 Initialization and Settling Time
	26.4.3 Sampling Clock
	26.4.4 Interrupts
	26.4.5 Configuring ADC1 and ADC0 for V-ADC Operation
	26.4.6 Configuration Changes and Sleep Mode

	26.5 Diagnosis Mode
	26.6 Register Description
	26.6.1 ADSCSRA - ADC Synchronization Control and Status Register A
	26.6.2 ADSCSRB - ADC Synchronization Control and Status Register B
	26.6.3 ADCRA - ADC Control Register A
	26.6.4 ADCRB - ADC Control Register B
	26.6.5 ADCRC - ADC Control Register C
	26.6.6 ADCRD - ADC Control Register D
	26.6.7 ADCRE - ADC Control Register E
	26.6.8 ADIFR - ADC Interrupt Flag Register
	26.6.9 ADIMR - ADC Interrupt Mask Register
	26.6.10 CADRCLH and CADRCLL - C-ADC Regulator Current Comparator Threshold Level
	26.6.11 VADICH and VADICL - V-ADC Instantaneous Conversion Result
	26.6.12 VADAC3, VADAC2, VADAC1 and VADAC0 - V-ADC Accumulated Conversion Result
	26.6.13 CADICH and CADICL - C-ADC Instantaneous Conversion Result
	26.6.14 CADAC3, CADAC2, CADAC1 and CADAC0 - C-ADC Accumulated Conversion Result
	26.6.15 DIDR0 – Digital Input Disable Register 0

	27. Band Gap Reference and Temperature Sensor
	27.1 Features
	27.2 Overview
	27.3 VTEMPBASE and VTEMPSLOPE
	27.4 Band Gap Sample Mode
	27.5 Register Description
	27.5.1 BGCRA - Band Gap Calibration Register A
	27.5.2 BGCRB - Band Gap Calibration Register B
	27.5.3 BGCSRA - Band Gap Control and Status Register A
	27.5.4 BGLR - Band Gap Lock Register

	28. debugWIRE On-chip Debug System
	28.1 Features
	28.2 Overview
	28.3 Physical Interface
	28.4 Software Break Points
	28.5 Limitations of debugWIRE
	28.6 Register Description
	28.6.1 DWDR – debugWire Data Register

	29. Boot Loader Support – Read-While-Write Self-Programming
	29.1 Features
	29.2 Overview
	29.3 Application and Boot Loader Flash Sections
	29.3.1 Application Section
	29.3.2 BLS – Boot Loader Section

	29.4 Read-While-Write and No Read-While-Write Flash Sections
	29.4.1 RWW – Read-While-Write Section
	29.4.2 NRWW – No Read-While-Write Section

	29.5 Boot Loader Lock Bits
	29.6 Entering the Boot Loader Program
	29.7 Addressing the Flash During Self-Programming
	29.8 Self-Programming the Flash
	29.8.1 Performing Page Erase by SPM
	29.8.2 Filling the Temporary Buffer (Page Loading)
	29.8.3 Performing a Page Write
	29.8.4 Using the SPM Interrupt
	29.8.5 Consideration While Updating BLS
	29.8.6 Prevent Reading the RWW Section During Self-Programming
	29.8.7 Setting the Lock Bits by SPM
	29.8.8 Reading the Fuse and Lock Bits from Software
	29.8.9 Reading the Signature Row from Software
	29.8.10 SPMCSR Writing Restrictions
	29.8.11 Programming Time for Flash when Using SPM
	29.8.12 Simple Assembly Code Example for a Boot Loader
	29.8.13 Atmel ATmega32HVE Boot Loader Parameters
	29.8.14 Atmel ATmega64HVE Boot Loader Parameters

	29.9 Register Description
	29.9.1 SPMCSR – Store Program Memory Control and Status Register

	30. Memory Programming
	30.1 Program And Data Memory Lock Bits
	30.2 Fuse Bits
	30.2.1 High Byte
	30.2.2 Low Byte
	30.2.3 Latching of Fuses

	30.3 Signature Bytes
	30.4 Calibration Bytes
	30.5 Page Size
	30.6 Serial Programming
	30.6.1 Serial Programming Algorithm
	30.6.2 Serial Programming Instruction set

	30.7 High-Voltage Serial Programming
	30.8 High-voltage Serial Programming Algorithm
	30.8.1 Enter High-voltage Serial Programming Mode
	30.8.2 Considerations for Efficient Programming
	30.8.3 Chip Erase
	30.8.4 Programming the Flash
	30.8.5 Programming the EEPROM
	30.8.6 Reading the Flash
	30.8.7 Reading the EEPROM
	30.8.8 Programming and Reading the Fuse and Lock Bits
	30.8.9 Reading the Signature Bytes and Calibration Byte
	30.8.10 Power-off sequence

	31. Electrical Characteristics AVR MCU
	31.1 Power Consumption Characteristics
	31.2 Bandgap Curvature Compensated (BGCC)
	31.2.1 DC Characteristics
	31.2.2 AC Characteristics
	31.2.3 Die Temperature Measurement

	31.3 ADC Characteristics
	31.3.1 Voltage ADC Characteristics - Operating Conditions
	31.3.2 Current ADC Characteristics - Operating Conditions

	31.4 Oscillator Characteristics
	31.5 External Interrupt Characteristics
	31.6 General I/O Lines Characteristics
	31.6.1 Port A and B Characteristics

	31.7 SPI Timing Characteristics
	31.7.1 SPI Timing Parameters

	31.8 Programming Characteristics
	31.8.1 Serial Programming
	31.8.1.1 Serial Programming Characteristics

	31.8.2 High-voltage Serial Programming
	31.8.2.1 High-voltage Serial Programming Characteristics TA = 25°C ± 10%, VCC = 3.3V ± 10% (Unless otherwise noted)

	32. Register Summary
	33. Instruction Set Summary
	34. Operating Circuit
	35. Ordering Information
	36. Packaging Information
	36.1 Markings

	37. Revision History

