

TS881

Datasheet - production data

Rail-to-rail 0.9 V nanopower comparator

Description The TS881 device is a single comparator featuring ultra low supply current (210 nA typical with output high, V_{CC} = 1.2 V, no load) with rail-to-

rail input and output capability. The performance of this comparator allows it to be used in a wide range of portable applications. The TS881 device minimizes battery supply leakage and therefore enhances battery lifetime.

Operating from 0.85 V to 5.5 V supply voltage, this comparator can be used over a wide temperature range (-40 to +125 °C) keeping the current consumption at an ultra low level.

The TS881 device is available in the SC70-5 and the SOT23-5 package, allowing great space saving on the PCB.

Figure 1. Pin connections (top view)

SOT23-5

December 2013

DocID023340 Rev 2

This is information on a product in full production.

www.st.com

4

IN-

Ultra low current consumption: 210 nA typ.

3

IN+

Rail-to-rail inputs Push-pull output

SC70-5 (top view)

SOT23-5 (top view)

Supply operation from 0.85 V to 5.5 V •

Propagation delay: 2 µs typ.

- Wide temperature range: -40 to +125 °C
- ESD tolerance: 8 kV HBM / 300 V MM
- SMD package

Features

.

•

Applications

- Portable systems
- Signal conditioning
- Medical

1/21

Contents

1	Absolute maximum ratings and operating conditions	5
2	Electrical characteristics	6
3	Package information 1	7
4	Ordering information	0
5	Revision history	0

List of figures

Figure 1.	Pin connections (top view)	. 1
Figure 2.	Current consumption vs. supply voltage - output low	10
Figure 3.	Current consumption vs. supply voltage - output high	
Figure 4.	Current consumption vs. input common mode voltage at V_{CC} = 1.2 V	10
Figure 5.	Current consumption vs. input common mode voltage at $V_{CC} = 5 V \dots$	
Figure 6.	Current consumption vs. temperature	
Figure 7.	Current consumption vs. toggle frequency	
Figure 8.	Input offset voltage vs. input common mode voltage at V_{CC} = 1.2 V	11
Figure 9.	Input hysteresis voltage vs. input common mode voltage at V_{CC} = 1.2 V	11
Figure 10.	Input offset voltage vs. input common mode voltage at $V_{CC} = 5 V$	
Figure 11.	Input hysteresis voltage vs. input common mode voltage at V_{CC} = 5 V	
Figure 12.	Input offset voltage vs. temperature	
Figure 13.	Input hysteresis voltage vs. temperature	
Figure 14.	Output voltage drop vs. sink current at V_{CC} = 1.2 V	
Figure 15.	Output voltage drop vs. source current at V_{CC} = 1.2 V	
Figure 16.	Output voltage drop vs. sink current at V_{CC} = 2.7 V	
Figure 17.	Output voltage drop vs. source current at V_{CC} = 2.7 V	12
Figure 18.	Output voltage drop vs. sink current at V _{CC} = 5 V	
Figure 19.	Output voltage drop vs. source current at V _{CC} = 5 V	
Figure 20.	Propagation delay T_{PLH} vs. input common mode voltage at V_{CC} = 1.2 V	
Figure 21.	Propagation delay T_{PHL} vs. input common mode voltage at V_{CC} = 1.2 V	13
Figure 22.	Propagation delay T_{PLH} vs. input common mode voltage at V_{CC} = 5 V	
Figure 23.	Propagation delay T_{PHL} vs. input common mode voltage at V_{CC} = 5 V	
Figure 24.	Propagation delay T_{PLH} vs. input signal overdrive at V_{CC} = 1.2 V	
Figure 25.	Propagation delay T_{PHL} vs. input signal overdrive at V_{CC} = 1.2 V	
Figure 26.	Propagation delay T_{PLH} vs. input signal overdrive at V_{CC} = 5 V	
Figure 27.	Propagation delay T_{PHL} vs. input signal overdrive at V_{CC} = 5 V	
Figure 28.	Propagation delay T _{PLH} vs. supply voltage for signal overdrive 10 mV	
Figure 29.	Propagation delay T _{PHL} vs. supply voltage for signal overdrive 10 mV	
Figure 30.	Propagation delay T _{PLH} vs. supply voltage for signal overdrive 100 mV	
Figure 31.	Propagation delay T _{PHL} vs. supply voltage for signal overdrive 100 mV	
Figure 32.	Propagation delay vs. temperature for signal overdrive 10 mV	
Figure 33.	Propagation delay vs. temperature for signal overdrive 100 mV	
Figure 34.	Input offset voltage vs. input common mode voltage at V _{CC} = 0.9 V \ldots	
Figure 35.	Input voltage hysteresis vs. input common mode voltage at $V_{CC} = 0.9 V$	
Figure 36.	Output voltage drop vs. sink current at $V_{CC} = 0.9 V$	
Figure 37.	Output voltage drop vs. source current at $V_{CC} = 0.9 V$.	15
Figure 38.	Propagation delay T_{PLH} vs. input common mode voltage at V_{CC} = 0.9 V	40
	and 10 mV signal overdrive	10
Figure 39.	Propagation delay T_{PHL} vs. input common mode voltage at V_{CC} = 0.9 V	10
Figure 40	and 10 mV signal overdrive	10
Figure 40.	Propagation delay T_{PLH} vs. input common mode voltage at V_{CC} = 0.9 V and 100 mV signal everytime	16
Figure 41	and 100 mV signal overdrive Propagation delay T_{PHL} vs. input common mode voltage at V_{CC} = 0.9 V	10
Figure 41.	and 100 mV signal overdrive	16
Figure 42.	and 100 mV signal overdrive Propagation delay T_{PLH} vs. input signal overdrive at V_{CC} = 0.9 V	16
Figure 42.	Propagation delay T_{PLH} vs. input signal overdrive at $V_{CC} = 0.9 V$	16
i iguie 40.	r robagation delay rpHL vs. input signal overdrive at v _{CC} – 0.9 v	10

Figure 44.	SC70-5 (SOT323-5) package outline	18
Figure 45.	SOT23-5 - lead small outline transistor package outline	19

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{ID}	Differential input voltage ⁽²⁾	±6	V
V _{IN}	Input voltage range	$(V_{CC}-) - 0.3$ to $(V_{CC}+) + 0.3$	V
R _{THJA}	Thermal resistance junction-to-ambient ⁽³⁾ SC70-5 SOT23-5	205 250	°C/W
T _{STG} Storage temperature		-65 to +150	°C
T _J Junction temperature		150	°C
T _{LEAD}	Lead temperature (soldering 10 seconds)	260	°C
	Human body model (HBM) ⁽⁴⁾	8000	kV
ESD	Machine model (MM) ⁽⁵⁾	300	V
	Charged device model (CDM) ⁽⁶⁾	1300	v
	Latch-up immunity	200	mA

Table 1. Absolute maximum ratings	Table	1. Absolute	maximum	ratings
-----------------------------------	-------	-------------	---------	---------

1. All voltage values, except differential voltages, are referenced to V_{CC}-. V_{CC} is defined as the difference between V_{CC}+ and V_{CC}-.

2. The magnitude of input and output voltages must never exceed the supply rail ±0.3 V.

3. Short-circuits can cause excessive heating. These values are typical.

- 4. According to JEDEC standard JESD22-A114F.
- 5. According to JEDEC standard JESD22-A115A.
- 6. According to ANSI/ESD STM5.3.1.

Table 2. Operating conditions

Symbol	bol Parameter Value		Unit
T _{oper}	Operating temperature range $0.85 V < V_{CC} < 5.5 V$ $1.1 V < V_{CC} < 5.5 V$	-40 to +85 -40 to +125	°C
V _{CC}	Supply voltage -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	0.85 to 5.5 1.1 to 5.5	V
V _{ICM}	Common mode input voltage range $0.85 V < V_{CC} < 5.5 V$ $-40 °C < T_{amb} < +85 °C$ $1.1 V < V_{CC} < 5.5 V$ $-40 °C < T_{amb} < +85 °C$ $-40 °C < T_{amb} < +125 °C$	- 0.2 to + 0.2 and V_{CC+} - 0.2 to V_{CC+} + 0.2 V_{CC-} - 0.2 to V_{CC+} + 0.2 V_{CC-} to V_{CC+} + 0.2	V

1

2 Electrical characteristics

	Table 3. V _{CC} = +0.9 V, T _{amb} = +25 °C, V _{ICM} = 0 V (unless otherwise specified) ⁽¹⁾						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{IO}	Input offset voltage (2)	-40 °C < T _{amb} < +85 °C	-10 -12	1	10 12	mV	
ΔV_{IO}	Input offset voltage drift	-40 °C < T _{amb} < +85 °C		4.6		μV/°C	
V _{HYST}	Input hysteresis voltage ⁽³⁾	-40 °C < T _{amb} < +85 °C	1.0	2.4	4.2	mV	
I _{IO}	Input offset current ⁽⁴⁾	-40 °C < T _{amb} < +85 °C	-10 -100		10 100	pА	
I _{IB}	Input bias current ⁽⁴⁾	-40 °C < T _{amb} < +85 °C	-10 -100		10 100	pА	
I _{CC}	Supply current per operator	No load, output low, $V_{ID} = -0.1 V$ -40 °C < T_{amb} < +85 °C No load, output high, V_{ID} = +0.1 V		300 260	400 450 350	nA	
I _{SC}	Short-circuit current	-40 °C < T _{amb} < +85 °C Source Sink		0.2 0.4	400	mA	
V _{OH}	Output voltage high	I _{source} = 50 μA -40 °C < T _{amb} < +85 °C	0.85 0.83	0.87		V	
V _{OL}	Output voltage low	I _{sink} = 50 μA -40 °C < T _{amb} < +85 °C		20	50 70	mV	
T _{PLH}	Propagation delay (low to high)	f = 1 kHz, C _L = 30 pF, R _L = 1 M Ω Overdrive = 10 mV -40 °C < T _{amb} < +85 °C Overdrive = 100 mV		7.2	14 16 5.0	μS	
		-40 °C < T _{amb} < +85 °C			5.5		
T _{PHL}	Propagation delay (high to low)	$f = 1 \text{ kHz}, C_{L} = 30 \text{ pF}, R_{L} = 1 \text{ M}\Omega$ Overdrive = 10 mV -40 °C < T _{amb} < +85 °C		6.0	11 12	μs	
		Overdrive = 100 mV -40 °C < T _{amb} < +85 °C		2.5	4.5 5.0		
Τ _R	Rise time (10% to 90%)	C_L = 30 pF, R_L = 1 M Ω		160		ns	
Τ _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		140		ns	
T _{ON}	Power-up time			1.1	1.7	ms	

Table 3. V_{CC} = +0.9 V, T_{amb} =	+25 °C, V _{ICM} = 0 V (unless otherwise specified) ⁽¹⁾

1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).

3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points.

4. Maximum values are guaranteed by design.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage ⁽²⁾	-40 °C < T _{amb} < +125 °C	-6	1	6	mV
ΔV_{IO}	Input offset voltage drift	-40 °C < T _{amb} < +125 °C		3		µV/°C
V _{HYST}	Input hysteresis voltage ⁽³⁾	-40 °C < T _{amb} < +125 °C	1.6	2.4	4.2	mV
I _{IO}	Input offset current ⁽⁴⁾	-40 °C < T _{amb} < +125 °C	-10 -100		10 100	pА
I _{IB}	Input bias current ⁽⁴⁾	-40 °C < T _{amb} < +125 °C	-10 -100	1	10 100	pА
I _{CC}	Supply current per operator	No load, output low, $V_{ID} = -0.1 V$ -40 °C < T_{amb} < +85 °C -40 °C < T_{amb} < +125 °C No load, output high, V_{ID} = +0.1 V -40 °C < T_{amb} < +85 °C		300 210	450 500 1050 350 400	nA
I _{SC}	Short-circuit current	-40 °C < T _{amb} < +125 °C Source Sink		1.4 1.0	950	mA
V _{OH}	Output voltage high	I _{source} = 0.2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	1.13 1.10 1.00	1.15		v
V _{OL}	Output voltage low	I _{sink} = 0.2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		40	50 60 70	mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < V _{CC} -40 °C < T _{amb} < +125 °C	50	68		dB
T _{PLH}	Propagation delay (low to high)	f = 1 kHz, C _L = 30 pF, R _L = 1 MΩ Overdrive = 10 mV -40 °C < T _{amb} < +125 °C		6	11 13	μs
		Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.2	3.1 3.4	
T _{PHL}	Propagation delay (high to low)	f = 1 kHz, C _L = 30 pF, R _L = 1 MΩ Overdrive = 10 mV -40 °C < T _{amb} < +125 °C		5.1	8 10	μs
		Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.0	2.6 3.1	
Τ _R	Rise time (10% to 90%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		100		ns
Τ _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		110		ns
T _{ON}	Power-up time			1.0	1.5	ms

Table 4. V_{CC} = +1.2 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless oth	nerwise specified) ⁽¹⁾
--	-----------------------------------

1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).

3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points.

4. Maximum values are guaranteed by design.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage ⁽²⁾	-40 °C < T _{amb} < +125 °C	-6	1	6	mV
ΔV_{IO}	Input offset voltage drift	-40 °C < T _{amb} < +125 °C		3		µV/°C
V _{HYST}	Input hysteresis voltage ⁽³⁾	-40 °C < T _{amb} < +125 °C	1.6	2.7	4.2	mV
I _{IO}	Input offset current ⁽⁴⁾	-40 °C < T _{amb} < +125 °C	-10 -100		10 100	pА
I _{IB}	Input bias current ⁽⁴⁾	-40 °C < T _{amb} < +125 °C	-10 -100	1	10 100	pА
I _{CC}	Supply current per operator	No load, output low, $V_{ID} = -0.1 V$ -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C No load, output high, $V_{ID} = +0.1 V$ -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		310 220	450 500 1150 350 400 1050	nA
I _{SC}	Short-circuit current	Source Sink		12 10		mA
V _{OH}	Output voltage high	I _{source} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	2.48 2.40 2.10	2.51		V
V _{OL}	Output voltage low	I _{sink} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		140	210 230 310	mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < V _{CC} -40 °C < T _{amb} < +125 °C	55	74		dB
T _{PLH}	Propagation delay (low to high)	f = 1 kHz, C _L = 30 pF, R _L = 1 MΩ Overdrive = 10 mV -40 °C < T _{amb} < +125 °C Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		6.3 2.4	12 13 3.0 3.7	μs
T _{PHL}	Propagation delay (high to low)	f = 1 kHz, C _L = 30 pF, R _L = 1 MΩ Overdrive = 10 mV -40 °C < T _{amb} < +125 °C Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		6.4 2.3	12 14 3.0 3.7	μs
Τ _R	Rise time (10% to 90%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		120		ns
Τ _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		130		ns
T _{ON}	Power-up time			0.9	1.5	ms

Table 5. V_{CC} = +2.7 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾

1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).

3. The hysteresis is a built-in feature of the TS881. It is defined as the voltage difference between the trip points.

4. Maximum values are guaranteed by design.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage ⁽²⁾	-40 °C < T _{amb} < +125 °C	-6	1	6	mV
ΔV_{IO}	Input offset voltage drift	-40 °C < T _{amb} < +125 °C		3		µV/°C
V _{HYST}	Input hysteresis voltage ⁽³⁾	-40 °C < T _{amb} < +125 °C	1.6	3.1	4.2	mV
I _{IO}	Input offset current ⁽⁴⁾	-40 °C < T _{amb} < +125 °C	-10 -100		10 100	pА
I _{IB}	Input bias current ⁽⁴⁾	-40 °C < T _{amb} < +125 °C	-10 -100	1	10 100	pА
I _{CC}	Supply current per operator	No load, output low, $V_{ID} = -0.1 V$ -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C No load, output high, $V_{ID} = +0.1 V$ -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		350 250	500 750 1350 400 650 1250	nA
I _{SC}	Short-circuit current	Source Sink		32 36		mA
V _{OH}	Output voltage high	I _{source} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	4.86 4.75 4.60	4.90		v
V _{OL}	Output voltage low	I _{sink} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		95	130 170 280	mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < V _{CC} -40 °C < T _{amb} < +125 °C	55	78		dB
SVR	Supply voltage rejection	∆V _{CC} = 1.2 V to 5 V -40 °C < T _{amb} < +125 °C	65	80		dB
T _{PLH}	Propagation delay (low to high)	f = 1 kHz, C _L = 30 pF, R _L = 1 MΩ Overdrive = 10 mV -40 °C < T _{amb} < +125 °C Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		7.8 2.6	13 22 3.4 4.1	μs
T _{PHL}	Propagation delay (high to low)	f = 1 kHz, C _L = 30 pF, R _L = 1 MΩ Overdrive = 10 mV -40 °C < T _{amb} < +125 °C Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		8.9 2.7	16 19 3.5 4.2	μs
Τ _R	Rise time (10% to 90%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		160		ns
Τ _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		150		ns
T _{ON}	Power-up time			1.1	1.5	ms

1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).

3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points.

4. Maximum values are guaranteed by design.

Figure 2. Current consumption vs. supply voltage - output low

900

800

400

300

200

Figure 4. Current consumption vs. input common mode voltage at V_{CC} = 1.2 V

Figure 6. Current consumption vs. temperature

+25 °C

40 °C

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Figure 5. Current consumption vs. input

common mode voltage at V_{CC} = 5 V

Figure 3. Current consumption vs. supply voltage - output high

TS881

AM00488

V_{CC} = 5 V

+85 °C

 $\mathbf{\nabla}$

output LOW

output HIGH

60

Temperature (°C)

80

40

800

700

600

(Yu) 500

엉 400

300

200

100 └ -40

-20

0

20

 $V_{CC} = 5V$

 $V_{ICM} = V_{CC}/2$

DocID023340 Rev 2

100

120

AM00491

Figure 8. Input offset voltage vs. input common mode voltage at V_{CC} = 1.2 V

Figure 9. Input hysteresis voltage vs. input common mode voltage at V_{CC} = 1.2 V

Figure 11. Input hysteresis voltage vs. input

common mode voltage at V_{CC} = 5 V

Figure 10. Input offset voltage vs. input common mode voltage at V_{CC} = 5 V

V_{CC} = 1.2 V

20 40 60 80

 $V_{CC} = 5V$

Temperature (°C)

100 120

Figure 13. Input hysteresis voltage vs. temperature

57/

2

1

-1

-2

-40 -20 0

VIO (mV) 0 VICM = VCC/2

2

1

0

-1

_2 _____ -0.2

0.0

VIO (mV)

1

0.1

0.01

1E-3

1E-4

VDROP (V)

Figure 14. Output voltage drop vs. sink current at V_{CC} = 1.2 V

Figure 16. Output voltage drop vs. sink current at V_{CC} = 2.7 V

Figure 17. Output voltage drop vs. source current at V_{CC} = 2.7 V

Figure 15. Output voltage drop vs. source

Figure 18. Output voltage drop vs. sink current at V_{CC} = 5 V

current at V_{CC} = 5 V

Figure 20. Propagation delay T_{PLH} vs. input

Figure 22. Propagation delay T_{PLH} vs. input common mode voltage at V_{CC} = 5 V

Figure 24. Propagation delay T_{PLH} vs. input signal overdrive at V_{CC} = 1.2 V

T = 125 °C

T = -40 °C

40

60

VOV (mV)

80

T = 85 °C

Figure 21. Propagation delay T_{PHL} vs. input

Figure 25. Propagation delay T_{PHL} vs. input signal overdrive at V_{CC} = 1.2 V

8

7

6

5

4

2

¹ŏ

3 T = 25 °C

20

TPLH (µs)

Figure 26. Propagation delay T_{PLH} vs. input signal overdrive at V_{CC} = 5 V

Figure 30. Propagation delay T_{PLH} vs. supply voltage for signal overdrive 100 mV

voltage for signal overdrive 10 mV 16

Figure 31. Propagation delay T_{PHL} vs. supply voltage for signal overdrive 100 mV

T = 85 °C T = 25 °C T = -40 °C 40 60 80 100 $V_{OV}(mV)$ AM14611 Figure 29. Propagation delay T_{PHL} vs. supply

Figure 27. Propagation delay $T_{\text{PHL}} \ \text{vs.}$ input signal overdrive at V_{CC} = 5 V

 $V_{CC} = 5 V$

V_{ICM} = 2.5 V

Figure 32. Propagation delay vs. temperature for signal overdrive 10 mV

Figure 34. Input offset voltage vs. input common mode voltage at V_{CC} = 0.9 V

Figure 36. Output voltage drop vs. sink current at V_{CC} = 0.9 V

Figure 35. Input voltage hysteresis vs. input common mode voltage at V_{CC} = 0.9 V

Figure 37. Output voltage drop vs. source current at V_{CC} = 0.9 V

Figure 38. Propagation delay T_{PLH} vs. input Figure 39. Propagation delay T_{PHL} vs. input common mode voltage at V_{CC} = 0.9 V and 10 mV common mode voltage at V_{CC} = 0.9 V and 10 mV signal overdrive

Figure 40. Propagation delay T_{PLH} vs. input common mode voltage at $V_{CC} = 0.9$ V and 100 mV signal overdrive

Figure 42. Propagation delay T_{PLH} vs. input signal overdrive at V_{CC} = 0.9 V

TS881

Figure 41. Propagation delay T_{PHL} vs. input common mode voltage at $V_{CC} = 0.9$ V and 100 mV signal overdrive

Figure 43. Propagation delay T_{PHL} vs. input signal overdrive at V_{CC} = 0.9 V

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

	Dimensions						
Symbol	Millimeters			Mils			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80		1.10	31.5		43.3	
A1	0.00		0.10	0.0		3.9	
A2	0.80	0.9	1.00	31.5	35.4	39.4	
b	0.15		0.30	5.9		11.8	
С	0.10		0.22	3.9		8.7	
D	1.80		2.20	70.9		86.6	
E	1.80		2.40	70.9		94.5	
E1	1.15	1.25	1.35	45.3	49.2	53.1	
е		0.65			25.6		
e1		1.3			51.2		
L	0.26	0.36	0.46	10.2	14.2	18.1	

Table 7. SC70-5 (SOT323-5) package mechanical data

Figure 45. SOT23-5 - lead small outline transistor package outline

Table 8. SOT23-5 - lead small outline transistor package mechanical data
--

	Dimensions						
Symbol	Millimeters			Inches			
	Тур.	Min.	Max.	Тур.	Min.	Max.	
А			1.45			0.057	
A1		0.00	0.15		0.000	0.006	
A2	1.15	0.90	1.30	0.045	0.035	0.051	
b		0.30	0.50		0.012	0.020	
С		0.08	0.22		0.003	0.009	
D	2.90			0.114			
E	2.80			0.110			
E1	1.60			0.063			
е	0.95			0.037			
e1	1.90			0.075			
L	0.45	0.30	0.60	0.018	0.012	0.024	
q	4	0	8	4	0	8	
Ν	5		5				

4

Order code	Temperature range	Package	Packaging	Marking
TS881ICT	-40 to +125 °C	SC70-5	Tape and reel	K56
TS881ILT	-40 to +125 °C	SOT23-5	Tape and reel	K524

Table 9. Order codes

5 Revision history

Date	Revision	Changes
18-Jul-2012	1	Initial release.
16-Dec-2013	2	 Updated title on page 1 (replaced 1.1 V by 0.9 V). Added package SOT23-5 and package information: on page 1, in Section : Description on page 1, Figure 1: Pin connections (top view) on page 1, Table 1, Section 3: Package information, Section 4: Ordering information. Updated Section : Features on page 1 (replaced "Supply operation" from "1.1 V to 5.5 V" to "0.85 V to 5.5 V", HBM changed from 4 kV to 8 kV). Updated Section : Description on page 1 (replaced 1.1 by 0.85 V). Updated Section : Description on page 1 (replaced 1.1 by 0.85 V). Updated Table 1 (changed ESD HBM to 8000 V). Updated Table 2 (updated and added parameters and values). Updated Table 3. Updated Table 4, Table 5, Table 6 (added min. values for I_{IO} and I_{IB} symbols). Note 4. below Table 4., note 4. below Table 5., and note 4. below Table 6 (replaced "Maximum values include unavoidable inaccuracies of the industrial tests." by "Maximum values are guaranteed by design."). Added Figure 34 to Figure 43.

Table 10. Document revision history

20/21

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

