

PTMC210404MD

Wideband LDMOS Two-stage Integrated Power Amplifier 2 x 20 W, 28 V, 1805 – 2200 MHz

Description

The PTMC210204MD is a wideband, two-stage LDMOS integrated amplifier intended for wideband driver applications. It has internal matching for operation from 1805 to 2200 MHz. It features on-chip matching high efficiency, and dual independent outputs with 20 W of output power each. It is available in a 14-lead plastic overmold package with gull wing leads.

Package Types: PG-HB1DSO-14-4 (formed leads)

Features

- On-chip matching for broadband operation
- Typical pulsed CW performance, 1990 MHz, 28 V, combined outputs
 - Output power at P1dB = 37 W
 - Linear Gain = 31.5 dB
 - Efficiency = 53.1%
- Capable of handling 10:1 VSWR @28 V, 37 W (CW) output power
- Integrated ESD protection
- Human Body Model Class 1B (per ANSI/ESDA/JEDEC JS-001)
- Integrated temperature compensation
- Pb-free and RoHS compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in Wolfspeed test fixture)

 $V_{DD} = 28 \text{ V}, I_{DQ1(A+B)} = 63 \text{ mA}, I_{DQ2(A+B)} = 219 \text{ mA}, P_{OUT} = 5 \text{ W avg}, f = 1990 \text{ MHz}, 3\text{GPP WCDMA signal, channel bandwidth} = 3.84 \text{ MHz}, peak/average = 7.5 dB @ 0.01\% CCDF$

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Linear Gain	G _{ps}	29	30	_	dB
Power Added Efficiency	PAE	17.5	18.5	_	%
Adjacent Channel Power Ratio	ACPR	_	-49.5	-47.5	dBc
Output PAR @ 0.01% CCDF	OPAR	7.0	7.2	_	dB

Note:

All published data at $\rm T_{CASE}$ = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

Rev. 04.1, 2022-1-27

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

DC Characteristics

Stage 1	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain Leakage Current	1	_	_	0.1		$V_{\rm DS} = 28 \text{ V}, V_{\rm GS} = 0 \text{ V}$
Diam Leakage Current	DSS	_	_	1.0	μA	$V_{\rm DS} = 60 \text{ V}, V_{\rm GS} = 0 \text{ V}$
Gate Leakage Current	I _{GSS}	_	_	0.1		V _{GS} = 1 V, V _{DS} = 0 V
On-State Resistance	R _{DS(on)}	_	5	_	Ω	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 0.1 \text{ V}$
Operating Gate Voltage	V	_	2.7	_	V	V _{DS} = 28 V, I _{DO1} = 63 mA
Fixture Operating Gate Voltage	V _{GS1}	_	4.9	_		V _{DS} - 20 V, 1 _{DQ1} - 05 mA

Stage 2	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain-source Breakdown Voltage	V _{BR(DSS)}	64	_	_	V	V _{GS} = 0 V, I _{DS} = 10 mA
Drain Leakage Current	1	_	_	0.1		$V_{\rm DS} = 28 \rm V, V_{\rm GS} = 0 \rm V$
Dialit Leakage Cutterit	DSS	_	_	1.0	μA	$V_{\rm DS} = 60 \text{V}, V_{\rm GS} = 0 \text{V}$
Gate Leakage Current	I _{GSS}	_	0.1			$V_{GS} = 1 V, V_{DS} = 0 V$
On-State Resistance	R _{DS(on)}	_	1.5	_	Ω	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$
Operating Gate Voltage	V	_	2.7	_	V	$V = 28 V I = 210 m \Lambda$
Fixture Operating Gate Voltage	V _{GS2}	_	4.9	_		$V_{DS} = 28 \text{ V}, \text{ I}_{DQ2} = 219 \text{ mA}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	V
Gate-Source Voltage	V _{GS}	-6 to +10	v
Junction Temperature	Tj	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	
Operating Voltage	V _{DD}	0 to 32	V

Thermal Characteristics

Characteristic	Symbol	Symbol Value		Conditions
Thermal Resistance Stage 1	P	6.7	°C/W	T _{CASE} = 70°C, 37 W CW
Thermal Resistance Stage 2	κ _{θJC}	1.4	C/W	T _{CASE} = 70°C, 37 W CW

Moisture Sensitivity Level

Level	Test Standard	Package Temperature	Unit
3	IPC/JEDEC J-STD-020	260	°C

Ordering Information

Type and Version	Order Code	Package Description	Shipping
PTMC210404MD V2 R5	PTMC210404MD-V2-R5	PG-HB1DSO-14-4, 14-lead, overmold	Tape & Reel, 500 pcs

Evaluation Boards

Order Code	Frequency	Description
LTN/PTMC210404MD-V2	1805 – 2200 MHz	Class AB with combined outputs, R04350, 0.508 mm thick

Find Gerber files for these reference fixtures on the Wolfspeed Web site at <u>www.wolfspeed.com/RF</u>

Typical Performance (data taken in a production test fixture)

Figure 1. Single-carrier WCDMA Drive-up

 $V_{DD} = 28 \text{ V}, \text{ I}_{DQ1} = 124\text{mA}, \text{ I}_{DQ2} = 438 \text{ mA},$ $P_{OUT} = 37\text{dBm}, 3\text{GPP WCDMA signal},$ PAR = 7.50 dB

Rev. 04.1, 2022-1-27

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Typical Performance (cont.)

Figure 3. Single-carrier WCDMA Broadband Performance

Figure 5. Small Signal CW Gain & Input Return Loss

V_{DD} = 28 V, I_{DQ1} = 124mA, I_{DQ2} = 438 mA

Figure 4. CW Performance

 V_{DD} = 28 V, I_{DQ1} = 124mA, I_{DQ2} = 438 mA

Rev. 04.1, 2022-1-27

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Load Pull Performance

		P _{1dB}									
C	Class AB Max Output Power Max Drain Efficiency				Max Output Power					ency	
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	Р _{оит} [dBm]	P _{OUT} [W]	PAE [%]	Zl [Ω]	Gain [dB]	Р _{оит} [dBm]	P _{OUT} [W]	PAE [%]
1805	49.8+j2.3	8.8-j6.30	29.8	43.8	23.8	51.2	13.4-j3.7	31.0	42.9	19.4	55.9
1960	49.9-j0.1	8.5-j8.20	29.5	43.8	23.9	50.5	10.9-j2.4	31.0	42.7	18.5	57.0
2170	51.9+j0.2	7.4-j7.60	27.9	43.9	24.3	51.8	7.10-j3.8	29.0	42.9	19.6	56.6
2200	49.3+j1.0	7.7-j7.70	27.6	43.8	23.8	51.5	6.90-j3.7	28.8	42.8	19.0	56.6

Load Pull Performance – Pulsed CW signal: V_{DD} = 28 V, I_{DQ1} = 63 mA, I_{DQ2} = 219 mA, class AB, each side

Evaluation Board, 1805 - 2200 MHz

Reference circuit assembly diagram (not to scale)

Rev. 04.1, 2022-1-27

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Evaluation Board, 1805 – 2200 MHz (cont.)

Evaluation Board Part No.	LTN/PTMC210404MD-V2
PCB Information	Rogers 4350B, 0.508 mm [0.020"] thick, 2 oz. copper, ε _r = 3.66, <i>f</i> = 1805 – 2200 MHz

Find Gerber files for this test fixture on the Wolfspeed Web site at www.wolfspeed.com/RF

Components Information

Component	Description	Manufacturer	P/N
Input			•
C101, C103, C105, C107, C109, C111, C203, C207	Capacitor, 4.7 μF	Murata Electronics North America	GRM32ER71H475KA88L
C102, C104, C106, C108, C110, C112, C202, C206	Capacitor, 10 μF	Taiyo Yuden	UMK325C7106MM-T
C201, C204, C205, C208	Capacitor, 10 pF	ATC	ATC800A100JT250T
R101, R103	Resistor, 0.0 ohms	Panasonic Electronic Components	ERJ-3GEY0R00V
R102, R201	Resistor, 50 ohms	Anaren	C8A50Z4A
R104, R105, R106, R107	Resistor, 1K ohms	Panasonic Electronic Components	ERJ-8GEYJ102V
R108, R109, R110, R111	Resistor, 4.3K ohms	Panasonic Electronic Components	ERJ-8GEYJ432V
U1, U2	Hybrid Coupler	Anaren	X3C21P1-03S

Pinout Diagram

Source: plated copper heat slug on backside of package

Rev. 04.1, 2022-1-27

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Package Outline Specifications – Package PG-HB1DSO-14-4

Diagram Notes-unless otherwise specified:

- 1. Mold/Dam Bar/Metal protrusion of 0.30 mm max per side not included.
- 2. Metal protrusion are connected to source and shall not exceed 0.10 mm max.
- 3. Fillets and radii: all radii are 0.3 mm max.
- 4. Interpret dimensions and tolerances per ISO 8015.
- 5. Dimensions are mm.
- 6. All tolerances \pm 0.1 mm unless specified otherwise.
- 7. All metal surfaces are tin-plated, except area of cut.
- 8. Lead thickness: 0.25 mm.

Rev. 04.1, 2022-1-27

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 04.1, 2022-1-27

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.