

ON Semiconductor®

FSA642 Low-Power, Three-Port, High-Speed MIPI Switch

Features

- Low On Capacitance: 7.0 pF Typical
- Low On Resistance: 7.0 Ω Typical
- Wide -3db Bandw idth: 1 GHz Typical
- 24-Lead UMLP (2.5 x 3.4 mm) Package
- 8 kV ESD Rating; >16 kV Pow er/GND ESD Rating

Applications

- Dual Camera Applications for Cell Phones
- Dual LCD Applications for Cell Phones, Digital Camera Displays, and View finders

Description

The FSA642 is a bi-directional, low-power, high-speed analog switch. The pin out is designed to ease differential signal layout and is configured as a triplepole, double-throw switch (TPDT). The FSA642 is optimized for switching between two MIPI devices, such as cameras or LCD displays and on-board Multimedia Application Processors (MAP).

The FSA642 is compatible with the requirements of Mobile Industry Processor Interface (MIPI). The low-capacitance design allows the FSA642 to switch signals that exceed 500 MHz in frequency. Superior channel-to-channel crosstalk immunity minimizes interference and allows the transmission of high-speed differential signals and single-ended signals, as described by the MIPI specification.

Ordering Information

Pin Definitions

Pin #	Name	Description
1, 2	CLKP, CLKN	Clock Path (Common)
3, 4	D1P, D1N	Data Path 1 (Common)
5, 6	D2P, D2N	Data Path 2 (Common)
7, 24	NC	No Connect (Float)
8	/OE	Output Enable (Active Low)
9	GND	Ground
10	VCC	Pow er
11	SEL	Select (0=A, 1=B)
12, 13	DA2N, DA2P	Data Path (A2)
14, 15	DA1N, DA1P	Data Path (A1)
16, 17	CLKAN, CLKAP	Clock Path (A)
18, 19	DB2N, DB2P	Data Path (2B)
20, 21	DB1P, DB1N	Data Path (1B)
22, 23	CLKBP, CLKBN,	Clock Path (B)

Truth Table

SEL	/OE	Function	
Don't Care	HIGH	Disconnect	
LOW	LOW	D1, D2, CLK=DA1, DA2, CLKA	
HIGH	LOW	D1, D2, CLK=DB1, DB2, CLKB	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Parameter			Unit
Vcc	Supply Voltage		-0.50	+5.25	V
VCNTRL	DC Input Voltage (SEL, /OE) ⁽¹⁾		-0.5	Vcc	V
Vsw	DC Switch I/O Voltage ⁽¹⁾		-0.5	V _{CC} + 0.3	V
lк	DC Input Diode Current	-50		mA	
Юит	DC Output Current		50	mA	
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		6.5	
ESD	Human Body Model, JEDEC: JESD22-A114	VO to GND		8.0	kV
200		Pow er to GND		16.0	
	Charged Device Model, JEDEC: JESD22-C10	1		2.5	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	2.65	4.30	V
V _{CNTRL}	Control Input Voltage (SEL, /OE) ⁽²⁾	0	V _{CC}	V
V _{SW}	Switch I/O Voltage	-0.5	V _{cc} -1	V
T _A	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical values are $T_A=25^{\circ}C$ unless otherwise specified.

Symbol	bol Parameter Conditions V _{cc} (V)	Conditions	V (V)	T _A =-40 to +85°C			Units
Symbol		Min.	Тур.	Max.	Units		
VIK	Clamp Diode Voltage	l _{IN} =-18 mA	2.775			-1.2	V
l _{IN}	Control Input Leakage	V _{SW} =0 to 4.3 V	4.3	-1		1	μA
Mari	VIH Input Voltage High	$V_{IN}=0$ to V_{CC}	2.650 to 2.775	1.3			V
VIH			4.3	1.7			v
VIL	Input Voltage Low	V _{IN} =0 to V _{CC}	2.650 to 2.775			0.5	V
loz	Off-State Leakage	A,B=0+0.3 V to V _{CC} -0.3	4.3	-2		2	μA
lcc	Quiescent Supply Current	V _{CNTRL} =0 or V _{CC} , lout=0	4.3			1.0	μA
Ісст	Increase in I _{CC} Current Per Control Voltage and V _{CC}	V _{CNTRL} =1.8 V	2.775			1.5	μA

DC Electrical Characteristics, Low-Speed Mode

All typical values are T_A=25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =-40 to +85°C			Units
Cymbol	rarameter	Conditions	• cc (•)	Min.	Тур.	Max.	Units
Ron	LS Switch On Resistance ⁽³⁾	V_{SW} =1.2 V, I _{ON} =-10 mA, Figure 4	2.65		10	14	Ω
ΔR_{ON}	LS Delta R _{ON} ⁽⁴⁾	V _{SW} =1.2 V, I _{ON} =-10 mA (Intra-pair)	2.65		0.65		Ω

Notes:

3. Measured by the voltage drop between A/B and CLK/Dn pins at the indicated current through the switch.

4. Guaranteed by characterization.

DC Electrical Characteristics, High-Speed Mode

All typical values are T_A=25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =-40 to +85°C			Units
Gymbol	rarameter	Conditions	• cc (•)	Min.	Тур.	Max.	
R _{ON}	HS Switch On Resistance ⁽⁵⁾	$V_{\text{SW}}\!\!=\!\!0.4$ V, $I_{\!ON}\!\!=\!\!-10$ mA, Figure 4	2.65		7.0	9.5	Ω
ΔR_{ON}	HS Delta R _{ON} ⁽⁶⁾	V _{SW} =0.4 V, I _{ON} =-10 mA (Intra-pair)	2.65		0.65		Ω

Notes:

5. Measured by the voltage drop between A, B, and Dn pins at the indicated current through the switch.

6. Guaranteed by characterization.

AC Electrical Characteristics

All values are at R_L =50 Ω and R_S =50 Ω and all typical values are V_{CC} =2.775V at T_A =25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =-40°C to +85°C			Units
Symbol	raiameter	Conditions	V CC (V)	Min.	Тур.	Max.	Units
Oirr	Off Isolation ⁽⁷⁾	f=100 MHz, R _T =50 Ω Figure 14	2.775		-35		dB
Xtalk	Non-Adjacent Channel Crosstalk ⁽⁷⁾	f=100 MHz, R _T =50 Ω Figure 15	2.775		-55		dB
BW	-3 db Bandw idth ⁽⁷⁾	C _L =0 pF, R _T =50 Ω Figure 13	2.775		1.0		GHz
t _{ON}	Turn-On Time SEL, /OE to Output	C _L =5 pF, V _{SW} =1.2 V Figure 6, Figure 7	2.650 to 2.775		20	37	ns
toff	Turn-Off Time SEL, /OE to Output	C _L =5 pF, V _{SW} =1.2 V Figure 6, Figure 7	2.650 to 2.775		15	27	ns
t _{PD}	Propagation Delay ⁽⁷⁾	C _L =5 pF Figure 6, Figure 8	2.775		0.25		ns
t _{BBM}	Break-Before-Make Time	C _L =5 pF, V _{SW1} =V _{SW2} =1.2 V Figure 12	2.650 to 2.775	3	5	8	ns

Note:

7. Guaranteed by characterization.

AC Electrical Characteristics, High-Speed

All typical values are V_{CC} =2.775V at T_A=25°C unless otherwise specified.

Symbol	Parameter	Conditions	T _A =-40°C to +85°C			Units
Symbol	Faranneter	Conditions	Min.	Тур.	Max.	Units
tsk(Part_Part)	Channel-to-Channel Skew Across Multiple Parts ^(8,9)	$V_{SW}=0.2 \text{ Vdiff}_{PP}, C_L=5 \text{ pF}$		40	80	ps
tsk(Chl_Chl)	Channel-to-Channel Skew Within a Single Part ⁽⁸⁾	V _{SW} =0.2 Vdiff _{PP} , C _L =5 pF, Figure 9		15	30	ps
t _{SK(Pulse)}	Skew of Opposite Transitions in the Same Differential Channel ⁽⁸⁾	$V_{SW}=0.2 \text{ Vdiff}_{PP}, C_L=5 \text{ pF}$		10	20	ps

Notes:

8. Guaranteed by characterization.

9. Assumes the same V_{CC} and temperature for all devices.

Capacitance

Symbol	Parameter	Conditions	T _A =-40°C to +85°C			Units
Symbol		Conditions	Min.	Тур.	Max.	Units
Cin	Control Pin Input Capacitance ⁽¹⁰⁾	V _{CC} =0V		1.5		
CON	Dn/CLK- On Capacitance ⁽¹⁰⁾	V _{CC} =2.775 V, /OE=0 V, f=1 MHz, at 25°C, Figure 11	6.0	7.0	9.0	pF
COFF	Dn/CLK Off Capacitance ⁽¹⁰⁾	V _{CC} =2.775 V, /OE=2.775 V, f=1 MHz, Figure 10		2.5		

Note:

10. Guaranteed by characterization.

I_{Dn(OFF)}

A

Select

90%

-90%

ι_{ON}

50%

V_{cc}/2

90%

 V_{CC}

τ_{OF}

T_{SK(Chl_Chl)}

50%

S

V_{SEL}=0 or V_{CC}

 $v_{Sel} = 0 \text{ or } V_{CC}$

GND

 $t_{FALL} = 2.5 ns$

10%

-90%

Description	Nominal Values (mm)	Description	Nominal Values (mm)
Overall Height	0.500	Lead Length (23x)	0.4
PKG Standoff	0.026	Lead Length, Pin 1 (1x)	0.5
Lead Thickness	0.152	Lead Pitch	0.4
Lead Width (24x)	0.200	Body Length (X)	3.4
		Body Width (Y)	2.5

2.5x3.4 UMLP24L Packing - Embossed Tape FSA642UMX

Packing Description:

UMLP 24 pins products are classified under Moisture Sensitive Level 1.

The carrier tape is made from dissipative polystyrene or polycarbonate resin. The cover tape is a multilayer film primarily composed of polyester film, adhesive layer, heat activated sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 5000 units per 178 mm diameter reel. Up to three reels are packed in each intermediate box. The reels is made of polystyrene plastic (anti-static coated or intrinsic).

These full reels are individually barcode labeled and placed inside a pizza box made of recyclable corrugated brown paper with a Fairchild logo printing. The reel is packed single reel in the pizza box. And these pizza boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product and applications using ON Semiconductor products, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor at sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor data sheets and/or specifications can and do vary in different applications are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributo

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada. Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semic onductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative