LJxx04xx & QJxx04xx Series

Main Features						
Symbol	Value	Unit				
I _{T(RMS)}	4	А				
V _{drm} /V _{rrm}	400 or 600	V				
Ι _{GT (Ω1)}	10 to 25	mA				

Schematic Symbol

PRELIMINARY & CONFIDENTIAL

Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final.

Description

This 4 A High Temperature Triac solid state switch series is designed for AC switching and phase control applications such as motor speed and temperature modulation controls, lighting controls, and static switching relays.

Sensitive type components guarantee gate control in Quadrants I & IV needed for digital control circuitry.

Standard type components normally operate in Quadrants I & III triggered from AC line.

Features & Benefits

- RoHS Compliant
- 150°C maximum junction temperature
- Voltage capability up to 600V
- Surge capability up to 48A at 60HZ half cycle
- Solid-state switching eliminates arcing or contact bounce that create voltage transients
- No contacts to wear out from reaction of switching events

RoHS

- Restricted (or limited) RFI generation, depending on activation point of sine wave
- Requires only a small gate activation pulse in each half-cycle
- Halogen free and RoHS compliant

Applications

Typical applications are AC solid-state switches, power tools, home/brown goods and white goods appliances.

Sensitive gate Triacs can be directly driven by microprocessor or popular opto-couplers/isolators.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Absolute Maximum Ratings — Sensitive Triacs (4 Quadrants)

Symbol	Paramet	Value	Unit		
$V_{\rm dSM}/V_{\rm RSM}$	Peak non-repetitive blocking voltage	Pw=10)0 μs	700	V
I _{T(RMS)}	RMS on-state current (full sine wave)	LJxx04Vy/LJxx04Dy T _c = 135 °C		4	А
1	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	40	А
TSM	(full cycle, T_J initial = 25°C)	f = 60 Hz	t = 16.7 ms	48	A
l²t	I²t Value for fusing	t _p = 8.3	t _p = 8.3 ms		A²s
di/dt	Critical rate of rise of on-state current ($I_{g} = 50 \text{mA}$ with $\leq 0.1 \mu \text{s}$ rise time)	f = 60 Hz	T _J = 150 °C	50	A/µs
I _{GTM}	Peak gate trigger current $t_p \le 10 \ \mu s$ $T_1 = 150 \ ^{\circ}C$		1.2	A	
P _{G(AV)}	Average gate power dissipation $T_{J} = 150 \text{ °C}$			0.3	W
T _{stg}	Storage temperature range			-40 to 150	°C
T	Operating junction temperature range			-40 to 150	°C

Note: xx=voltage/10, y = sensitivity LJxx04xx & QJxx04xx Series A

Thyristors

4 Amp High Temperature Sensitive & Standard Triac

PRELIMINARY & CONFIDENTIAL

Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. P numbers and specifications are subject to change until the datasheet is made final.

healute N	Aaximum F	Ratings _ 1	Standard 1	Triace
boolute n		uungo v		11403

Symbol	Paramet	Value	Unit		
V _{DSM} /V _{RSM}	Peak non-repetitive blocking voltage	Pw=100 μs		700	V
I _{T(RMS)}	RMS on-state current (full sine wave)	QJxx04Vy/QJxx04Dy	QJxx04Vy/QJxx04Dy $T_c = 135 \text{ °C}$		А
1	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	40	А
TSM	(full cycle, T_j initial = 25°C)	f = 60 Hz	t = 16.7 ms	48	A
l²t	l ² t Value for fusing	t _p = 8.3	t _p = 8.3 ms		A²s
di/dt	Critical rate of rise of on-state current (I _g = 50mA with \leq 0.1µs rise time)	f = 60 Hz	T _J = 150 °C	50	A/µs
I _{gtm}	Peak gate trigger currentt_{p} \le 10 \mu s; $J_{gT} \le J_{GTM}$ T_{J}		T _J = 150 °C	1.2	A
P _{G(AV)}	Average gate power dissipation $T_{J} = 150 \text{ °C}$			0.3	W
T _{stg}	Storage temperature range			-40 to 150	°C
T,	Operating junction ten	nperature range		-40 to 150	°C

Note: xx=voltage/10, y = sensitivity

Electrical Characteristics (T_J = 25°C, unless otherwise specified) — **Sensitive Triac** (4 Quadrants)

Symbol	Test Conditions	Qua	Quadrant		Unit
	V 12V P 60.0	- -	N A A X	10	0
I _{GT}	$V_{_{D}} = 12V R_{_{L}} = 60 \Omega$	IV	MAX.	20	mA
V _{gt}	$V_{_{D}} = 12V R_{_{L}} = 60 \Omega$	ALL	MAX.	1.3	V
V _{gd}	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 150^{\circ}\text{C}$ ALL		MIN.	0.2	V
I _H	I _T = 100mA		MAX.	20	mA
dv/dt	V V Cota Open T 150%C	400V	TYP	75)///
uv/ut	$V_{\rm D} = V_{\rm DRM}$ Gate Open $T_{\rm J} = 150^{\circ}{\rm C}$ 600V			45	V/µs
(dv/dt)c	$(di/dt)c = 2.16 \text{ A/ms } T_{J} = 150^{\circ}C$		TYP.	1	V/µs
t _{gt}	$I_{g} = 2 \times I_{gT}$ PW = 15µs $I_{T} = 5.6$ A(pl	k)	TYP.	10	μs

Note: xx=voltage/10, x = package

Electrical Characteristics ($T_j = 25^{\circ}$ C, unless otherwise specified) — Standard Triac

Symbol	Test Conditions	Quad	rant	QJxx04x3	QJxx04x4	Unit				
	V 12V P 60.0	- -	MAX.	10	25	mA				
I _{gt}	$V_{\rm D} = 12 V H_{\rm L} = 00.22$	$V_{\rm D} = 12V {\rm H}_{\rm L} = 60.22$	$V_{\rm D} = 12V \ {\rm H}_{\rm L} = 60.02$	$V_{\rm D} = 12V R_{\rm L} = 60 \Omega$	$V_{\rm D} = 12V$ $R_{\rm L} = 60.02$	IV	TYP.	25	50	mA
V _{gt}	$V_{D} = 12V R_{L} = 60 \Omega$	- -	MAX.	1.3	1.3	V				
V _{gd}	$V_{_D} = V_{_{DRM}} R_{_L} = 3.3 \text{ k}\Omega \text{ T}_{_J} = 150^{\circ}\text{C}$	ALL	MIN.	0.2	0.2	V				
I _H	$I_{T} = 200 \text{mA}$		MAX.	20	30	mA				
dv/dt	V = V Cata Open T = 150°C	400V	MIN.	75	150	V/µs				
uv/ut	$V_{\rm D} = V_{\rm DRM}$ Gate Open $T_{\rm J} = 150^{\circ}$ C	600V	IVIIIN.	45	100	v/µs				
(dv/dt)c	$(di/dt)c = 2.16 \text{ A/ms } T_{J} = 150^{\circ}\text{C}$		TYP.	2	2	V/µs				
t _{gt}	$I_{g} = 2 \times I_{gT}$ PW = 15µs $I_{T} = 5.6$ A(pk)	TYP.	10	15	μs				

Note: xx=voltage/10, x = package

Littelfuse Power

Thyristors

4 Amp High Temperature Sensitive & Standard Triac PRELIMINARY & CONFIDENTIAL

Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts

umbers and specifications are subject to change until

Static Characteristics ($T_J = 25^{\circ}C$, unless otherwise specified)

numbers and specifications are subject to the datasheet is made final.

Symbol	Test Conditions				Value	Unit									
V _{TM}	I _{TM} = 5.6A t _p = 380 μs	MAX.			1.40	V									
	I _{DRM} V _{DRM} = V _{RRM}		LJxx04xy	T _J = 25°C	5	μA									
		MAX.		T _J = 125°C	0.5	mA									
I _{drm}				T _J = 150°C	3										
I _{rrm}			IVIAX.	IVIAA.	IVIAA.	IVIAA.	IVIAA.	IVIAA.	IVIAA.	IVIAX.	IVIAX.	IVIAA.	IVIAA.		T _J = 25°C
		QJxx04xy	T _J = 125°C	0.5	0										
				T _J = 150°C	3	mA									

Note: xx=voltage/10, x = package, y = sensitivity

Thermal Resistances						
Symbol	Parameter		Value	Unit		
D	Junction to case (AC)	LJ/QJxx04Dy	1.5	°C/W		
R _{θ(JC)}	Junction to case (AC)	LJ/QJxx04Vy	1.5	C/VV		
R _{θ(J-A)}	Junction to ambient	LJ/QJxx04Vy LJ/QJxx04Dy	70	°C/W		

Note: xx=voltage/10, y = sensitivity

Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

Littelfuse Power

Thyristors

4 Amp High Temperature Sensitive & Standard Triacs

Figure 3: Normalized DC Holding Current vs. Junction Temperature

Figure 4: Normalized DC Gate Trigger Voltage for

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Figure 7: On-State Current vs. On-State Voltage (Typical)

Figure 6: Maximum Allowable Case Temperature vs. On-State Current

Thyristors

4 Amp High Temperature Sensitive & Standard Tria

PRELIMINARY & CONFIDENTIAL

Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final.

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (LiquidusTemp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nenow	-Time (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time with Temperatu	in 5°C of actual peak ıre (t _p)	20 – 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized compound meeting flammability rating V-0.
Terminal Material	Copper Alloy

Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Supply Frequency: 60Hz Sinusoidal

following surge current interval.2. Overload may not be repeated until junction temperature has returned to steady-state

Specific Case Temperature

RMS On-State [I_{T(RMS)}]: Max Rated Value at

1. Gate control may be lost during and immediately

Load: Resistive

rated value.

Notes:

Environmental Specifications

Test	Specifications and Conditions
AC Blocking (V _{DRM})	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 150°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -55°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

4 Amp High Temperature Sensitive & Standard Triacs

Dimensions – TO-251AA (V-Package) – V-PAK Through Hole

Dimension		Inches		N	lillimeter	ſS
Dimension	Min	Тур	Max	Min	Тур	Max
А	0.037	0.040	0.043	0.94	1.01	1.09
В	0.235	0.242	0.245	5.97	6.15	6.22
С	0.350	0.361	0.375	8.89	9.18	9.53
D	0.205	0.208	0.213	5.21	5.29	5.41
E	0.255	0.262	0.265	6.48	6.66	6.73
F	0.027	0.031	0.033	0.69	0.80	0.84
G	0.087	0.090	0.093	2.21	2.28	2.36
Н	0.085	0.092	0.095	2.16	2.34	2.41
I	0.176	0.180	0.184	4.47	4.57	4.67
J	0.018	0.020	0.023	0.46	0.51	0.58
K	0.035	0.037	0.039	0.90	0.95	1.00
L	0.018	0.020	0.023	0.46	0.52	0.58
Р	0.042	0.047	0.052	1.06	1.20	1.32
Q	0.034	0.039	0.044	0.86	1.00	1.11
R	0.034	0.039	0.044	0.86	1.00	1.11
S	0.074	0.079	0.084	1.86	2.00	2.11

Dimensions – TO-252AA (D-Package) – D-PAK Surface Mount

Dimension	Inches			Millimeters		
	Min	Тур	Max	Min	Тур	Max
А	0.037	0.040	0.043	0.94	1.01	1.09
В	0.235	0.243	0.245	5.97	6.16	6.22
С	0.106	0.108	0.113	2.69	2.74	2.87
D	0.205	0.208	0.213	5.21	5.29	5.41
E	0.255	0.262	0.265	6.48	6.65	6.73
F	0.027	0.031	0.033	0.69	0.80	0.84
G	0.087	0.090	0.093	2.21	2.28	2.36
Н	0.085	0.092	0.095	2.16	2.33	2.41
I	0.176	0.179	0.184	4.47	4.55	4.67
J	0.018	0.020	0.023	0.46	0.51	0.58
K	0.035	0.037	0.039	0.90	0.95	1.00
L	0.018	0.020	0.023	0.46	0.51	0.58
Μ	0.000	0.000	0.004	0.00	0.00	0.10
Ν	0.021	0.026	0.027	0.53	0.67	0.69
0	0°	0°	5°	0°	0°	5°
Р	0.042	0.047	0.052	1.06	1.20	1.32
Q	0.034	0.039	0.044	0.86	1.00	1.11

PRELIMINARY & CONFIDENTIAL

Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts umbers and specifications are subject to change until he datasheet is made final.

Product Selector

Part Number	Voltage		Gate Sensitivity Quadrants		Tura	
	400V	600V	1 – 11 – 111	IV	Туре	Package
LJxx04D8	x	х	10mA	20mA	Sensitive Triac	TO-252 D-PAK
LJxx04V8	x	x	10mA	20mA	Sensitive Triac	TO-251 V-PAK
QJxx04D3	x	x	10mA	25mA	Standard Triac	TO-252 D-PAK
QJxx04V3	x	x	10mA	25mA	Standard Triac	TO-251 V-PAK
QJxx04D4	x	x	25mA	50mA	Standard Triac	TO-252 D-PAK
QJxx04V4	x	x	25mA	50mA	Standard Triac	TO-251 V-PAK

Note: xx=voltage/10

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
LJxx04D8TP	LJxx04D8	0.3g	Tube Pack	750(75 per tube)
LJxx04D8RP	LJxx04D8	0.3g	Embossed Carrier	2500
LJxx04V8TP	LJxx04V8	0.4g	Tube Pack	750(75 per tube)
QJxx04D3TP	QJxx04D3	0.3g	Tube Pack	750(75 per tube)
QJxx04D3RP	QJxx04D3	0.3g	Embossed Carrier	2500
QJxx04V3TP	QJxx04V3	0.4g	Tube Pack	750(75 per tube)
QJxx04D4TP	QJxx04D4	0.3g	Tube Pack	750(75 per tube)
QJxx04D4RP	QJxx04D4	0.3g	Embossed Carrier	2500
QJxx04V4TP	QJxx04V4	0.4g	Tube Pack	750(75 per tube)

Note: xx=voltage/10

Part Numbering System

Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final.

Part Marking System

TO-252 Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-2 Standards

PRELIMINARY & CONFIDENTIAL

Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littlefuse.com/disclaimer-electronics.