Low-Voltage CMOS Quad 2-Input NAND Gate # With 5 V-Tolerant Inputs The MC74LCX00 is a high performance, quad 2–input NAND gate operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A $V_{\rm I}$ specification of 5.5 V allows MC74LCX00 inputs to be safely driven from 5 V devices. Current drive capability is 24 mA at the outputs. #### **Features** - Designed for 2.3 V to 3.6 V V_{CC} Operation - 5 V Tolerant Inputs Interface Capability With 5 V TTL Logic - LVTTL Compatible - LVCMOS Compatible - 24 mA Balanced Output Sink and Source Capability - Near Zero Static Supply Current (10 μA) Substantially Reduces System Power Requirements - Latchup Performance Exceeds 500 mA - ESD Performance: Human Body Model >2000 V Machine Model >200 V - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant ## ON Semiconductor® http://onsemi.com #### MARKING DIAGRAMS SOIC-14 D SUFFIX CASE 751A 1 TSSOP-14 DT SUFFIX CASE 948G A = Assembly Location L, WL = Wafer Lot Y = Year W, WW = Work Week G or ■ = Pb–Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. Figure 1. Pinout: 14-lead (Top View) Figure 2. Logic Diagram #### **PIN NAMES** | Pins | Function | |--------|-------------| | An, Bn | Data Inputs | | On | Outputs | #### **TRUTH TABLE** | Inputs | | Outputs | |--------|----|---------| | An | Bn | On | | L | L | Н | | L | Н | Н | | Н | L | Н | | Н | Н | L | H = High Voltage Level L = Low Voltage Level For $I_{\mbox{\footnotesize{CC}}}$ reasons, DO NOT FLOAT Inputs #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Condition | Unit | |------------------|----------------------------------|-----------------------------------|--------------------------------------|------| | V _{CC} | DC Supply Voltage | -0.5 to +7.0 | | V | | VI | DC Input Voltage | $-0.5 \le V_{\parallel} \le +7.0$ | | V | | V _O | DC Output Voltage | $-0.5 \le V_{O} \le V_{CC} + 0.5$ | Output in HIGH or LOW State (Note 1) | V | | I _{IK} | DC Input Diode Current | -50 | V _I < GND | mA | | I _{OK} | DC Output Diode Current | -50 | V _O < GND | mA | | | | +50 | V _O > V _{CC} | mA | | I _O | DC Output Source/Sink Current | ±50 | | mA | | I _{CC} | DC Supply Current Per Supply Pin | ±100 | | mA | | I _{GND} | DC Ground Current Per Ground Pin | ±100 | | mA | | T _{STG} | Storage Temperature Range | -65 to +150 | | °C | | MSL | Moisture Sensitivity | | Level 1 | | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. ^{1.} Io absolute maximum rating must be observed. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | Min | Туре | Max | Unit | |---------------------|--|--|------------|----------------------|------------------|------| | V _{CC} | , | perating
ata Retention Only | 2.0
1.5 | 2.5, 3.3
2.5, 3.3 | 3.6
3.6 | V | | VI | Input Voltage | | 0 | | 5.5 | ٧ | | V _O | , , | HIGH or LOW State)
3-State) | 0 | | V _{CC} | V | | I _{OH} | · v | CC = 3.0 V - 3.6 V
CC = 2.7 V - 3.0 V
CC = 2.3 V - 2.7 V | | | -24
-12
-8 | mA | | I _{OL} | V | CC = 3.0 V - 3.6 V
CC = 2.7 V - 3.0 V
CC = 2.3 V - 2.7 V | | | +24
+12
+8 | mA | | T _A | Operating Free-Air Temperature | | -40 | | +85 | °C | | $\Delta t/\Delta V$ | Input Transition Rise or Fall Rate, V _{IN} from 0.8 | 3 V to 2.0 V, V _{CC} = 3.0 V | 0 | | 10 | ns/V | ## DC ELECTRICAL CHARACTERISTICS | | | | T _A = -40°C | | | |------------------|---------------------------------------|--|------------------------|------|------| | Symbol | Characteristic | Condition | Min | Max | Unit | | V _{IH} | HIGH Level Input Voltage (Note 2) | 2.3 V ≤ V _{CC} ≤ 2.7 V | 1.7 | | V | | | | 2.7 V ≤ V _{CC} ≤ 3.6 V | 2.0 | | | | V _{IL} | LOW Level Input Voltage (Note 2) | 2.3 V ≤ V _{CC} ≤ 2.7 V | | 0.7 | V | | | | 2.7 V ≤ V _{CC} ≤ 3.6 V | | 0.8 | | | V _{OH} | HIGH Level Output Voltage | $2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{ I}_{OH} = -100 \mu\text{A}$ | V _{CC} - 0.2 | | V | | | | V _{CC} = 2.3 V; I _{OH} = -8 mA | 1.8 | | | | | | V _{CC} = 2.7 V; I _{OH} = -12 mA | 2.2 | | | | | | V _{CC} = 3.0 V; I _{OH} = -18 mA | 2.4 | | | | | | V _{CC} = 3.0 V; I _{OH} = -24 mA | 2.2 | | | | V _{OL} | LOW Level Output Voltage | $2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{I}_{OL} = 100 \mu\text{A}$ | | 0.2 | V | | | | V _{CC} = 2.3 V; I _{OL} = 8 mA | | 0.6 | | | | | V _{CC} = 2.7 V; I _{OL} = 12 mA | | 0.4 | | | | | V _{CC} = 3.0 V; I _{OL} = 16 mA | | 0.4 | | | | | V _{CC} = 3.0 V; I _{OL} = 24 mA | | 0.55 | | | l _{OFF} | Power Off Leakage Current | V _{CC} = 0, V _{IN} = 5.5 V or V _{OUT} = 5.5 V | | 10 | μΑ | | I _{IN} | Input Leakage Current | V _{CC} = 3.6 V, V _{IN} = 5.5 V or GND | | ±5 | μΑ | | I _{CC} | Quiescent Supply Current | V _{CC} = 3.6 V, V _{IN} = 5.5 V or GND | | 10 | μА | | ΔI_{CC} | Increase in I _{CC} per Input | $2.3 \le V_{CC} \le 3.6 \text{ V}; V_{IH} = V_{CC} - 0.6 \text{ V}$ | | 500 | μΑ | ^{2.} These values of V_{I} are used to test DC electrical characteristics only. #### AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}; R_L = 500 \Omega$) | | | | | | Lim | nits | | | | |------------------|------------------------|----------|-----------------------|--|--------------------|-------|--------------------|-------|------| | | | | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | | | | | | | | | | V _{CC} = 3.3 | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 2.7 \text{ V}$ $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ | | | V ± 0.2 V | | | | | | | C _L = 8 | 50 pF | C _L = 5 | 50 pF | C _L = 3 | 30 pF | | | Symbol | Parameter | Waveform | Min | Max | Min | Max | Min | Max | Unit | | t _{PLH} | Propagation Delay Time | 1 | 1.5 | 5.5 | 1.5 | 6.2 | 1.5 | 6.6 | ns | | t _{PHL} | Input-to-Output | | 1.5 | 5.5 | 1.5 | 6.2 | 1.5 | 6.6 | | | toshl | Output-to-Output Skew | | | 1.0 | | | | | ns | | toslh | (Note 3) | | | 1.0 | | | | | | Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design. #### **DYNAMIC SWITCHING CHARACTERISTICS** | | | | T _A = +25°C | | | | |------------------|----------------------------|---|------------------------|------|-----|------| | Symbol | Characteristic | Condition | Min | Тур | Max | Unit | | V _{OLP} | Dynamic LOW Peak Voltage | $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ | | 0.8 | | V | | | (Note 4) | V _{CC} = 2.5 V, C _L = 30 pF, V _{IH} = 2.5 V, V _{IL} = 0 V | | 0.6 | | V | | V _{OLV} | Dynamic LOW Valley Voltage | $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ | | -0.8 | | V | | | (Note 4) | $V_{CC} = 2.5 \text{ V}, C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ | | -0.6 | | V | ^{4.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. #### **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Condition | Typical | Unit | |------------------|-------------------------------|---|---------|------| | C _{IN} | Input Capacitance | V_{CC} = 3.3 V, V_I = 0 V or V_{CC} | 7 | pF | | C _{OUT} | Output Capacitance | V_{CC} = 3.3 V, V_I = 0 V or V_{CC} | 8 | pF | | C _{PD} | Power Dissipation Capacitance | 10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 25 | pF | #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|-----------------------|-----------------------| | MC74LCX00DG | SOIC-14
(Pb-Free) | 55 Units / Rail | | MC74LCX00DR2G | SOIC-14
(Pb-Free) | 2500 Tape & Reel | | MC74LCX00DTG | TSSOP-14
(Pb-Free) | 96 Units / Rail | | MC74LCX00DTR2G | TSSOP-14
(Pb-Free) | 2500 Tape & Reel | | NLV74LCX00DTR2G* | TSSOP-14
(Pb-Free) | 2500 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. **WAVEFORM 1 - PROPAGATION DELAYS** $t_{R} = t_{F} = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_{W} = 500 \text{ ns}$ | | Vcc | | | | | |--------|----------------------|-------|----------------------|--|--| | Symbol | 3.3 V <u>+</u> 0.3 V | 2.7 V | 2.5 V <u>+</u> 0.2 V | | | | Vmi | 1.5 V | 1.5 V | Vcc/2 | | | | Vmo | 1.5 V | 1.5 V | Vcc/2 | | | Figure 3. AC Waveforms C_L = 50 pF at V_{CC} = 3.3 \pm 0.3 V or equivalent (includes jig and probe capacitance) C_L = 30 pF at V_{CC} = 2.5 \pm 0.2 V or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω) Figure 4. Test Circuit △ 0.10 SOIC-14 NB CASE 751A-03 ISSUE L **DATE 03 FEB 2016** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT - MAXIMUM MATERIAL CONDITION. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. - 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.35 | 1.75 | 0.054 | 0.068 | | A1 | 0.10 | 0.25 | 0.004 | 0.010 | | АЗ | 0.19 | 0.25 | 0.008 | 0.010 | | b | 0.35 | 0.49 | 0.014 | 0.019 | | D | 8.55 | 8.75 | 0.337 | 0.344 | | Е | 3.80 | 4.00 | 0.150 | 0.157 | | е | 1.27 | BSC | 0.050 BSC | | | Н | 5.80 | 6.20 | 0.228 | 0.244 | | h | 0.25 | 0.50 | 0.010 | 0.019 | | L | 0.40 | 1.25 | 0.016 | 0.049 | | M | 0 ° | 7° | 0 ° | 7° | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code Α = Assembly Location WL = Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator. "G" or microdot " ■". may or may not be present. ## **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|--|-------------|--|--| | DESCRIPTION: | SOIC-14 NB | | PAGE 1 OF 2 | | | ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### SOIC-14 CASE 751A-03 ISSUE L #### DATE 03 FEB 2016 | STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 2:
CANCELLED | STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE | STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE | |---|---|---|---| | STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE | STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE | | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-14 NB | | PAGE 2 OF 2 | ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. **SOLDERING FOOTPRINT** 7.06 14X 1.26 **DATE 17 FEB 2016** - NOTES. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR DECEDEDIC ONLY - REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIMETERS | | INCHES | | | |-----|-------------|----------|--------|-----------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | 0.65 BSC | | 0.026 BSC | | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | 6.40 BSC | | 0.252 BSC | | | М | 0 ° | 8 ° | o ° | a ° | | #### **GENERIC MARKING DIAGRAM*** = Assembly Location = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | TSSOP-14 WB | | PAGE 1 OF 1 | **DIMENSIONS: MILLIMETERS** 0.65 **PITCH** ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. 14X 0.36 ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: a Phone: 00421 33 790 2910 Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative