SLVS063E - NOVEMBER 1988 - REVISED OCTOBER 2003 - Low Temperature Coefficient - Wide Operating Current . . . 400 μA to 10 mA - 0.27-Ω Dynamic Impedance - ±1% Tolerance Available - Specified Temperature Stability - Easily Trimmed for Minimum Temperature Drift - Fast Turnon # description/ordering information The LM236-2.5, LM336-2.5, and LM336B-2.5 integrated circuits are precision 2.5-V shunt regulator diodes. These reference circuits operate as low-temperature-coefficient 2.5-V Zener diodes with a $0.2-\Omega$ dynamic impedance. A third terminal provided on the circuit allows the reference voltage and temperature coefficient to be trimmed easily. D PACKAGE (TOP VIEW) NC [1 8] CATHODE NC [2 7] NC NC [3 6] NC ANODE [4 5] ADJ NC - No internal connection LM336-2.5, LM336B-2.5 . . . LP PACKAGE (TOP VIEW) The series is useful as precision 2.5-V low-voltage references (V_Z) for digital voltmeters, power supplies, or operational-amplifier circuitry. The 2.5-V voltage reference makes it convenient to obtain a stable reference from 5-V logic supplies. Devices in this series operate as shunt regulators, and can be used as either positive or negative voltage references. The LM236-2.5 is characterized for operation from -25° C to 85° C. The LM336-2.5 and LM336B-2.5 are characterized for operation from 0° C to 70° C. #### **ORDERING INFORMATION** | TA | PACKAG | ΕŤ | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |---------------|---------------------|--------------|--------------------------|---------------------| | | | Tube of 75 | LM336D-2-5 | 222.25 | | | 0010 (D) | Reel of 2500 | LM336DR-2-5 | 336-25 | | 0°C to 70°C | SOIC (D) | Tube of 75 | LM336BD-2-5 | 000005 | | | | Reel of 2500 | LM336BDR-2-5 | 336B25 | | | | Bulk of 1000 | LM336LP-2-5 | 222.25 | | | | Reel of 2000 | LM336LPR-2-5 | 336-25 | | | TO-226 / TO-92 (LP) | Bulk of 1000 | LM336BLP-2-5 | 000005 | | | | Reel of 2000 | LM336BLPR-2-5 | 336B25 | | 25°C to 25°C | SOIC (D) | Tube of 75 | LM236D-2-5 | 226.25 | | –25°C to 85°C | SOIC (D) | Reel of 2500 | LM236DR-2-5 | 236-25 | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SLVS063E - NOVEMBER 1988 - REVISED OCTOBER 2003 # symbol ### schematic diagram NOTE A: All component values are nominal. # absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Reverse current, I _R | 20 mA | |---|----------------| | Forward current, I _F | 10 mA | | Package thermal impedance, θ_{JA} (see Notes 1 and 2): D package | 97°C/W | | LP package | 140°C/W | | Operating virtual junction temperature, T _J | 150°C | | Storage temperature range, T _{stg} | –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # recommended operating conditions | | | MIN | MAX | UNIT | |----|--|-----|-----|------| | т. | Operating free six temperature | -25 | 85 | °C | | тд | Operating free-air temperature LM336-2.5, LM336B-2.5 | 5 0 | 70 | -0 | NOTES: 1. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability. ^{2.} The package thermal impedance is calculated in accordance with JESD 51-7. # LM236-2.5, LM336-2.5, LM336B-2.5 2.5-V INTEGRATED REFERENCE CIRCUITS SLVS063E - NOVEMBER 1988 - REVISED OCTOBER 2003 # electrical characteristics at specified free-air temperature (unless otherwise noted) | | PARAMETER | | TEST CONDITIONS | | LM236-2.5 | | | LM336-2.5 | | | LINUT | |--------------------------|--|---|--|------------------|-----------|------|------|-----------|------|------|---------| | FARAIVIETER | | TEST CONDITIONS | | T _A † | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | \/_ | Deference voltege | I- 1 m 1 | LM236, LM336 | 25°C - | 2.44 | 2.49 | 2.54 | 2.39 | 2.49 | 2.59 | \/ | | VZ | Reference voltage | $I_Z = 1 \text{ mA}$ | LM336B | | | | | 2.44 | 2.49 | 2.54 | V | | $\Delta V_{Z(\Delta T)}$ | Change in reference voltage with temperature | V_Z adjusted to 2.490 V, $I_Z = 1 \text{ mA}$ | | Full range | | 3.5 | 9 | | 1.8 | 6 | mV | | | Change in reference | 1 400 A | 1- 40 A | 25°C | | 2.6 | 6 | | 2.6 | 10 | >/ | | $\Delta VZ(\Delta I)$ | $\Delta VZ(\Delta I)$ voltage with current | | $I_Z = 400 \mu\text{A} \text{ to } 10 \text{mA}$ | | | 3 | 10 | | 3 | 12 | mV | | $\Delta V_{Z(\Delta t)}$ | Long-term change in reference voltage | I _Z = 1 mA | | 25°C | | 20 | | | 20 | | ppm/khr | | Reference | | I= - 1 m A | - 4 A | | | 0.2 | 0.6 | | 0.2 | 1 | ۱۸/ | | z _Z | impedance | $I_Z = 1 \text{ mA}, f = 1 \text{ kHz}$ | | Full range | | 0.4 | 1 | | 0.4 | 1.4 | W | [†] Full range is –25°C to 85°C for the LM236-2.5 and 0°C to 70°C for the LM336-2.5 and LM336B-2.5. # TYPICAL CHARACTERISTICS #### REFERENCE IMPEDANCE # **APPLICATION INFORMATION** Figure 4. 2.5-V Reference Figure 5. 2.5-V Reference With Minimum Temperature Coefficient Figure 6. Wide-Input-Range Reference www.ti.com 19-Feb-2022 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-----------------------------|---------| | LM236D-2-5 | ACTIVE | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -25 to 85 | 236-25 | Samples | | LM236DE4-2-5 | ACTIVE | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -25 to 85 | 236-25 | Samples | | LM236DG4-2-5 | ACTIVE | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -25 to 85 | 236-25 | Samples | | LM236DR-2-5 | ACTIVE | SOIC | D | 8 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -25 to 85 | 236-25 | Samples | | LM336-2.5 MDC | ACTIVE | DIESALE | Υ | 0 | 400 | RoHS & Green | Call TI | Level-1-NA-UNLIM | -40 to 85 | | Samples | | LM336BD-2-5 | ACTIVE | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 336B25 | Samples | | LM336BDG4-2-5 | ACTIVE | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 336B25 | Samples | | LM336BDR-2-5 | ACTIVE | SOIC | D | 8 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 336B25 | Samples | | LM336BLP-2-5 | ACTIVE | TO-92 | LP | 3 | 1000 | RoHS & Green | SN | N / A for Pkg Type | 0 to 70 | 336B25 | Samples | | LM336BLPE3-2-5 | ACTIVE | TO-92 | LP | 3 | 1000 | RoHS & Green | SN | N / A for Pkg Type | 0 to 70 | 336B25 | Samples | | LM336BLPR-2-5 | ACTIVE | TO-92 | LP | 3 | 2000 | RoHS & Green | SN | N / A for Pkg Type | 0 to 70 | 336B25 | Samples | | LM336D-2-5 | ACTIVE | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 336-25 | Samples | | LM336DG4-2-5 | ACTIVE | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 336-25 | Samples | | LM336DR-2-5 | ACTIVE | SOIC | D | 8 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 336-25 | Samples | | LM336LP-2-5 | ACTIVE | TO-92 | LP | 3 | 1000 | RoHS & Green | SN | N / A for Pkg Type | 0 to 70 | 336-25 | Samples | | LM336LPE3-2-5 | ACTIVE | TO-92 | LP | 3 | 1000 | RoHS & Green | SN | N / A for Pkg Type | 0 to 70 | 336-25 | Samples | | LM336LPR-2-5 | ACTIVE | TO-92 | LP | 3 | 2000 | RoHS & Green | SN | N / A for Pkg Type | 0 to 70 | 336-25 | Samples | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. # PACKAGE OPTION ADDENDUM www.ti.com 19-Feb-2022 **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION www.ti.com 5-Jan-2022 # TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | # QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | LM236DR-2-5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | LM336BDR-2-5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | LM336DR-2-5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | **PACKAGE MATERIALS INFORMATION** www.ti.com 5-Jan-2022 *All dimensions are nominal | 7 III GITTIOTIOTOTIO GITO TIOTITITICA | | | | | | | | |---------------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | LM236DR-2-5 | SOIC | D | 8 | 2500 | 340.5 | 336.1 | 25.0 | | LM336BDR-2-5 | SOIC | D | 8 | 2500 | 340.5 | 336.1 | 25.0 | | LM336DR-2-5 | SOIC | D | 8 | 2500 | 340.5 | 336.1 | 25.0 | www.ti.com 5-Jan-2022 # **TUBE** *All dimensions are nominal | an annensions are norminal | | | | | | | | | |----------------------------|--------------|--------------|------|-----|--------|--------|--------|--------| | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | | LM236D-2-5 | D | SOIC | 8 | 75 | 507 | 8 | 3940 | 4.32 | | LM236DE4-2-5 | D | SOIC | 8 | 75 | 507 | 8 | 3940 | 4.32 | | LM236DG4-2-5 | D | SOIC | 8 | 75 | 507 | 8 | 3940 | 4.32 | | LM336BD-2-5 | D | SOIC | 8 | 75 | 507 | 8 | 3940 | 4.32 | | LM336BDG4-2-5 | D | SOIC | 8 | 75 | 507 | 8 | 3940 | 4.32 | | LM336D-2-5 | D | SOIC | 8 | 75 | 507 | 8 | 3940 | 4.32 | | LM336DG4-2-5 | D | SOIC | 8 | 75 | 507 | 8 | 3940 | 4.32 | SMALL OUTLINE INTEGRATED CIRCUIT # NOTES: - 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. - 4. This dimension does not include interlead flash. - 5. Reference JEDEC registration MS-012, variation AA. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4040001-2/F TO-92 - 5.34 mm max height TO-92 #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. Lead dimensions are not controlled within this area.4. Reference JEDEC TO-226, variation AA. - 5. Shipping method: - a. Straight lead option available in bulk pack only. b. Formed lead option available in tape and reel or ammo pack. - c. Specific products can be offered in limited combinations of shipping medium and lead options. - d. Consult product folder for more information on available options. TO-92 TO-92 # IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated