

Fail-Safe, Single Supply RS-232 Transceivers UM3221E/UM3222E/UM3232E

General Description

The UM3221E/UM3222E/UM3232E series are 3.3V powered RS-232 transceivers intended for portable or hand-held applications. The UM3221E has one driver/one receiver while the UM3222E/UM3232E has two drivers/two receivers. The device features low power consumption, high data-rate capability and enhanced ESD protection. The ESD rating of all transmitter outputs and receiver inputs is ± 15 kV for both human body mode and IEC61000-4-2 air discharge methods, and over ± 8 kV for IEC61000-4-2 contact discharge methods. The logic I/O pins are protected to ± 2 kV for human body mode.

Small footprint, low profile package and the use of small 0.1μ F capacitors ensure board space savings as well. Data rates greater than 250kbps are guaranteed at worst case load conditions. This family is fully compatible with 3.3V-only systems, mixed 1.8V and 3.3V systems, mixed 3.3V and 5.0V systems and 5.0V-only systems.

The UM3221E/UM3222E has a low-power shutdown mode where the devices' driver outputs and charge pumps are disabled. During shutdown, the supply current falls to less than 1 μ A that reduces power consumption in battery-powered portable systems or other low power consumption systems. The UM3221E/UM3222E receivers remain active in shutdown mode, allowing monitoring of external signals.

The UM3221E/UM3222E and UM3232E are pin, package, and functionally compatible with the industry standard MAX242 and MAX 232, respectively.

Applications

Features

- Industrial Automation Equipments
- Battery-Powered Equipments
- Hand-Held Equipments
- POS Terminals

- Meets True EIA/TIA-232-F Standards from a +3.0V to +5.5V Power Supply
- Meets EIA/TIA-562 Levels of ±3.7V with Supply Voltages as Low as 2.7V
- Enhanced ESD Specifications: ±15kV Human Body Mode ±15kV IEC61000-4-2 Air Discharge Mode ±8kV IEC61000-4-2 Contact Discharge Mode
- 1µA Low Power Shutdown (UM3221E/UM3222E)
- 250kbps Minimum Transmission Rate
- Guaranteed 30V/µs Max Slew Rate
- Latch-Up Performance Exceeds 200mA
- Hot Swap and Fail-Safe
- I/O Logic Compatible with 1.8V Logic @ V_{CC}=3.3V

Ordering Information

Part Number	Temp. Range	Package Type	Shipping Qty
UM3221EEAE	-40°C to +85°C	SSOP16	2000pcs/13 Inch Tape & Reel
UM3221EEUE	-40°C to +85°C	TSSOP16	3000pcs/13 Inch Tape & Reel
UM3222EEUE	-40°C to +85°C	TSSOP20	3000pcs/13 Inch Tape & Reel
UM3232EESE	-40°C to +85°C	SOP16	2500pcs/13 Inch Tape & Reel
UM3232EEPE	-40°C to +85°C	DIP16	25pcs/Tube
UM3232EEUE	-40°C to +85°C	TSSOP16	3000pcs/13 Inch Tape & Reel
UM3232EEAE	-40°C to +85°C	SSOP16	2000pcs/13 Inch Tape & Reel

Pin Description

	Pin No.		Pin Name	Function
UM3221E	UM3222E	UM3232E	Pin Name	Function
1	1	-	ĒN	Receiver Enable. Active low.
2	2	1	C1+	Positive Terminals of Voltage-Doubler Charge Pump Capacitor
3	3	2	\mathbf{V} +	Positive Voltage Generated by the Charge Pump
4	4	3	C1-	Negative Terminals of Voltage-Doubler Charge Pump Capacitor
5	5	4	C2+	Positive Terminals of Inverting Charge Pump Capacitor
6	6	5	C2-	Negative Terminals of Inverting Charge Pump Capacitor
7	7	6	V-	Negative Voltage Generated by the Charge Pump
13	8, 17	7, 14	T_OUT	RS-232 Driver Outputs
8	9, 16	8, 13	R_IN	RS-232 Receiver Inputs
9	10, 15	9, 12	R_OUT	RS-232 Receiver Outputs
11	12, 13	10, 11	T_IN	RS-232 Driver Inputs
14	18	15	GND	Ground
15	19	16	V _{CC}	+3.0V to +5.5V Supply Voltage Input
16	20	-	SHDN	Shut off Pump Power and Transmitters. Active low.

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage on V _{CC}	2	-0.3 to +6	V
V_+	Voltage on V ₊		$(V_{CC}-0.3)$ to +7.5	V
V.	Voltage on V.		-7.5 to +0.3	V
T_IN	Voltage on T_IN		-0.3 to (V_{CC} +0.3)	V
R_IN	Voltage on R_IN		± 30	V
T_OUT	Voltage on T_OUT	$(V_{-}-0.3)$ to $(V_{+}+0.3)$	V	
R_OUT	Voltage on R_OUT	-0.3 to (V_{CC} +0.3)	V	
	Short-Circuit Duration, T_	Short-Circuit Duration, T_OUT		
		SSOP16	775	
		TSSOP20	879	
P _D	Continuous Power Dissipation at $T_A=70^{\circ}C$	SOP16	696	mW
		DIP16	842	
		TSSOP16	754	
T _A	Operating Temperature Ra	-40 to +85	°C	
T _{STG}	Storage Temperature Rar	-65 to +165	°C	
T_L	Maximum Lead Temperature for 10 Seconds	Soldering	+300	°C

Absolute Maximum Ratings (Note 1)

Note 1: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(V_{CC}=+3.0V to +5.5V, C1- C4=0.1µF, T_A=T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A=25°C)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	
DC CHARACTERIS	FICS (V_{CC} =	+3.3V or +5V,	T _A =25°C)					
V _{CC} Supply Current	I _{CC}	SHDN=V _{CC} , No Load				1.5	mA	
Shutdown Supply Current	I _{SHDN}	SHDN=GND				1	μΑ	
LOGIC INPUTS								
Input Leakage Current		T_IN, \overline{SH}	IDN, EN			±1	μΑ	
L	V	T IN,	$V_{CC}=3.3V$			0.8	X7	
Input Threshold Low	V_{IL}	$\overline{\text{SHDN}}$, $\overline{\text{EN}}$ V _{CC} =5.0V				0.8	V	
Lengt Threeheld High	V	T IN,	$V_{CC}=3.3V$	1.6			V	
Input Threshold High	\mathbf{V}_{IH}	$\overline{\text{SHDN}}, \overline{\text{EN}}$	V _{CC} =5.0V	2.2			V	
Transmitter		V _{CC} =	3.3V		0.2		V	
Input Hysteresis		V _{CC} =	V _{CC} =5.0V		0.15		V	
RECEIVER OUTPUTS								
Output Voltage Low	V	V _{CC} =3.3V,			0.8	V		
Output Voltage Low	V _{OL}	V _{CC} =5.0V,			0.8	v		
Output Voltage High	V _{OH}	V _{CC} =3.3V, I	V _{CC} =3.3V, I _{OUT} =-3.0mA				V	
Output Voltage mgn	♥ OH	V _{CC} =5.0V, I	_{OUT} =-3.0mA	4.4			v	
RECEIVER INPUTS								
Input Voltage Range				-30		30	V	
Innut Threshold I our		T _A =+25°C	$V_{CC}=3.3V$	0.8	1.15		V	
Input Threshold Low		$1_{A} - +23$ C	$V_{CC}=5.0V$	0.8	1.55		v	
Innut Threshold High		T -125°C	$V_{CC}=3.3V$		1.35	2	V	
Input Threshold High		$T_A = +25^{\circ}C$	$V_{CC}=5.0V$		1.75	2	v	
Input Hysteresis					0.2		V	
Input Resistance		$T_A = +25^{\circ}C$		3	5	7	kΩ	
TRANSMITTER OU	TRANSMITTER OUTPUTS							
Output Voltage Swing		All Drivers Loaded with 3kΩ to Ground		±5.0	±6.0		V	
Output Short-Circuit		Short to V _{CC} , GND	V _{CC} =3.3V		±30	±60	mA	
Current		or Other TXD Pin	V _{CC} =5.0V		±40	±60	mA	

Electrical Characteristics (Continued)

(V_{CC}=+3.0V to +5.5V, C1- C4=0.1 μ F, T_A=T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A=25°C)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
TIMING CHARACT	ERISTICS			-	-		
Maximum Data Rate		$R_L=3k\Omega$ to $C_L=50pF$ to One Transmitte		250		kbps	
Receiver Propagation Delay	t _{PLH} , t _{PHL}	C _L =150pF Figure 1	All Parts, Normal Operation		0.15		μs
Receiver Skew	$ t_{PHL}-t_{PLH} $					0.1	μs
Transmitter Propagation Delay	t _{PLH} , t _{PHL}	R _L =3k C _L =250 All Transmitte Figure		0.9		μs	
Transmitter Skew	$ t_{PHL}-t_{PLH} $				0.1	μs	
Transition-Region Slew Rate		$T_A=+25^{\circ}C, V$ $R_L=3k\Omega$ to $C_L=50pF$ to Measured from or +3V to Figure	3	15	30	V/µs	
ESD AND LATCH U	P PERFOR	MANCE					
		Human Bod	y Model		±15		
R_IN, T_OUT ESD-Protection		IEC61000-4-2, Contact Discharge			±8		kV
Voltage		IEC61000-4-2, Air-Gap Discharge			±15		
Logic Pin ESD-Protection Voltage		Human Bod		±2		kV	
Latch Up Performance		JEDEC Standa	ard No.78D		±200		mA

Detailed Description

Dual Charge-Pump Voltage Converter

The UM3221E/UM3222E/UM3232Es' internal power supply consists of a regulated dual charge pump and provides output the maxim voltages of +7V (doubling charge pump) and -7V (inverting charge pump) over the +3.0V to +5.5V V_{CC} range. The charge pump operates in discontinuous mode; if the output voltages are less than 7V, the charge pump is enabled, and if the output voltages exceed 7V, the charge pump is disabled. The charge pumps require only four small, external 0.1µF capacitors for the voltage doubler and inverter functions (see Figure 2).

RS-232 Transmitters

The transmitters are inverting level translators that translate TTL/CMOS inputs to EIA/TIA-232 output levels. All UM3221E/UM3222E/UM3232E transmitters guarantee a 250kbps data rate for full load conditions ($3k\Omega$ and 1000pF). Transmitters can be paralleled to drive multiple receivers. When T_IN is not driven, UM3221/UM3222 will keep logic high, while UM3232's T_IN logic level is on hold.

RS-232 Receivers

The receivers convert RS-232 signals to CMOS output levels and accept inputs up to $\pm 30V$ while presenting the required $3k\Omega$ to $7k\Omega$ input impedance. The UM3221E/UM3222E receivers have inverting three-state outputs. Drive \overline{EN} high to place the receivers into a high impedance state. Receivers can be either active or inactive in shutdown state depending on \overline{EN} status.

UM3221E/UM3222E

Supply current falls to less than 1μ A in shutdown mode (SHDN = GND). When shutdown, the device's charge pumps are shut off, V+ is pulled down to V_{CC}, V- is pulled to ground, and the transmitter outputs are disabled (high impedance). The time required to recover from shutdown is typically 100 μ s. Connect SHDN to V_{CC} if shutdown mode is not used. SHDN has no effect on R_OUT.

±15kV ESD Protection

All pins on UM3221E/UM3222E/UM3232E devices include ESD protection structures, but the family incorporates advanced structures which allow the RS-232 pins (transmitter outputs and receiver inputs) to survive ESD events up to ± 15 kV. The RS-232 pins are particularly vulnerable to ESD damage because they are typically connected to an exposed port on the exterior of the finished product. The ESD structures withstand high ESD in all states: normal operation, shutdown and powered down. After an ESD event, circuits keep working without latch up. ESD protection can be tested in various ways; the transmitter outputs and receiver inputs are characterized for protection to the following limits: ± 15 kV using the Human Body Model, ± 8 kV using the Contact Discharge method specified in IEC61000-4-2, ± 15 kV using the Air-Gap Discharge method specified in IEC61000-4-2. The logic pins are characterized for protection to the following limit: ± 2 kV using the Human Body Model.

Hot Swap and Fail-Safe

The UM3221E/UM3222E/UM3232E guarantees a logic-high receiver output when the receiver inputs are shorted to GND or open, or when they are connected to a line with no driver enabled.

Because of the latch-up characteristics and all sort protection, UM3221E/UM3222E/UM3232E support hot swap.

Test Circuits

≻ ≤10ns 3V 90% 50% 90% 50% 10% 10% Input 0V 4µs t₽HL **t**_{PLH} Output V_{OH} 1.5\ 1.5V V_{OL}

Receiver Waveforms

Figure 1

Typical Operating Circuits

Figure 2

Typical Operating Characteristics

 $(V_{CC}=+3.3V, 250kbps data rate, 0.1\mu F capacitors, all transmitters loaded with 3k\Omega and C_L, T_A=25°C, unless otherwise noted.)$

Applications Information

Capacitor Selection

The capacitor type used for C1–C4 is not critical for proper operation; polarized or non-polarized capacitors can be used. The charge pump requires 0.1μ F capacitors for 3.3V operation. Increasing the capacitor values (e.g. by a factor of 2) reduces ripples on the transmitter outputs and slightly reduces power consumption. C2, C3 and C4 can be increased without changing C1's value. When using the minimum required capacitor values, make sure the capacitor value does not degrade excessively with temperature. If in doubt, use capacitors with a larger nominal value. The capacitor's equivalent series resistance (ESR), which usually rises at low temperatures, influences the amount of ripples on V+ and V- output voltages.

The following table shows some recommended minimum required pump capacitor values for different input voltage ranges.

Minimum Required Pump Capacitor Value							
Input Voltage V _{CC}	Charge Pump Capacitor Value for UM32XX						
2.7V to 3.6V	C1-C4=0.1µF						
3.6V to 5.5V	C1-C4=0.47µF						
2.7V to 5.5V	C1C4=0.47µF						

Power Supply Decoupling

In most circumstances, a $0.1\mu F V_{CC}$ bypass capacitor is adequate. In applications sensitive to power-supply noise, use a capacitor of the same value as charge pump capacitor C1. Connect bypass capacitors to the IC as close as possible.

Operation down to 2.7V

Transmitter outputs meet EIA/TIA-562 levels of $\pm 3.7V$ with supply voltages as low as 2.7V.

Interconnection with 3V and 5V Logic

The UM3221E/UM3222E/UM3232E can directly interface with various 3V and 5V logic families, including ACT and HCT CMOS.

Package Information

Outline Drawing

UM3232EESE SOP16

				DIM	IENSIO	NS			
			Symbol	MIL	LIMET	TERS]	INCHES	5
	★ ⁰	Symbol	Min	Тур	Max	Min	Тур	Max	
	¥↓ ↓ ↓	А	1.35	1.60	1.75	0.053	0.063	0.069	
		A1	0.10	-	0.25	0.004	-	0.010	
		A2	1.25	1.45	1.65	0.049	0.057	0.065	
	Ψ	b	0.33	-	0.51	0.013	-	0.020	
		с	0.17	-	0.25	0.007	-	0.010	
	End View	D	9.80	10.00	10.20	0.386	0.394	0.402	
		Е	3.80	3.90	4.00	0.150	0.154	0.157	
		E1	5.80	6.00	6.20	0.228	0.236	0.244	
Side View		e		1.27BS0		0	.050BS0	C	
		L	0.40	-	1.27	0.016	-	0.050	
		θ	0°	-	8°	0°	-	8°	

Land Pattern

UM3232EEPE DIP16

Outline Drawing							
			DIM	ENSIO	NS		
	Symbol	MIL	LIMET	ERS]	INCHES	5
	Symbol	Min	Тур	Max	Min	Тур	Max
	А	3.71	4.01	4.31	0.146	0.158	0.170
	A1	0.51	-	-	0.020	-	-
	A2	3.20	3.40	3.60	0.126	0.134	0.142
	b	0.38	0.48	0.57	0.015	0.019	0.022
Top View End View	b1		1.52BSC	2	C	0.060BS	С
	с	0.20	0.28	0.36	0.008	0.011	0.014
┨ <u>╶</u> ╋ <u>╫</u> ┝┽╔┽╗┾┽╔┽╗┝┽╔┽╗	D	18.80	19.00	19.20	0.740	0.748	0.756
	Е	6.20	6.40	6.60	0.244	0.252	0.260
→ ^{⊳1} ← → ←⊳ Side View	E1	7.32	7.62	7.92	0.288	0.300	0.312
	E2	8.40	8.70	9.00	0.331	0.343	0.354
	e	,	2.54BSC	2	0	0.100BS	С
	L	3.00	3.30	3.60	0.118	0.130	0.142

Outline Drawing DIMENSIONS **MILLIMETERS** INCHES Symbol Min Max Min Тур Тур Max D -1.20 -0.047 А _ _ 0.05 0.15 0.002 0.006 A1 --0.80 1.05 0.031 0.041 A2 --A3 0.34 0.44 0.54 0.013 0.017 0.021 ш b 0.19 -0.30 0.007 -0.012 0.09 0.20 0.004 0.008 _ c D 4.86 4.96 5.10 0.191 0.195 0.201 Pin #1 ID Ē 4.40 Е 4.30 4.50 0.169 0.173 0.177 Top View End View E1 6.20 6.40 6.60 0.244 0.252 0.260 0.65BSC 0.026BSC e 0.018 0.024 0.030 L 0.45 0.60 0.75 1.00REF 0.039REF L1 0.25BSC 0.010BSC L2 Side View 0° θ1 0° -8° -8° θ2 10° 12° 14° 10° 12° 14° θ3 10° 12° 14° 10° 12° 14°

UM3221EEUE/UM3232EEUE TSSOP16

Land Pattern

UM3222EEUE TSSOP20

	DIMENSIONS								
S-mak al	MILLIMETERS INCHES					5			
Symbol	Min	Тур	Max	Min	Тур	Max			
Α	-	-	1.20	-	-	0.047			
A1	0.05	-	0.15	0.002	-	0.006			
A2	0.80	-	1.05	0.031	-	0.041			
A3	0.34	0.44	0.54	0.013	0.017	0.021			
b	0.19	-	0.30	0.007	-	0.012			
с	0.09	-	0.20	0.004	-	0.008			
D	6.40	6.50	6.60	0.252	0.256	0.260			
Е	4.30	4.40	4.50	0.169	0.173	0.177			
E1	6.20	6.40	6.60	0.244	0.252	0.260			
e	().65BS	С	0	.026BS0	С			
L	0.45	0.60	0.75	0.018	0.024	0.030			
L1	1	1.00RE	F	0	0.039RE	F			
L2	0).25BS	С	0.010BSC					
θ1	0°	-	8°	0°	_	8°			
θ2	10°	12°	14°	10°	12°	14°			
θ3	10°	12°	14°	10°	12°	14°			

Land Pattern

Outline Drawing DIMENSIONS D **MILLIMETERS** INCHES Symbol Min Max Тур Min Тур Max А 2.00 0.079 -_ _ _ A1 0.05 _ _ 0.002 _ Ш ш 1.75 0.065 0.069 0.073 A2 1.65 1.85 0.22 0.30 0.38 0.009 0.012 0.015 b €Э 0.09 0.17 0.25 0.004 0.010 0.007 с 88 Ы Н D 5.90 6.20 6.50 0.232 0.244 0.256 5.30 0.197 0.209 0.220 5.00 5.60 Е End View Top View 7.40 7.80 E1 8.20 0.291 0.307 0.323 0.65BSC 0.026BSC e 5 0.030 0.75 0.95 0.022 0.037 L 0.55 θ 0° _ 8° 0° 8° Side View _

UM3221EEAE/UM3232EEAE SSOP16

Land Pattern

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc Add: Unit 606, No.570 Shengxia Road, Shanghai 201210 Tel: 021-51093966 Fax: 021-51026018 Website: www.union-ic.com