MSA-0600 # Cascadable Silicon Bipolar MMIC Amplifier # **Data Sheet** ## **Description** The MSA-0600 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) chip. This MMIC is designed for use as a general purpose 50 W gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial, industrial and military applications. The MSA-series is fabricated using HP's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility. The recommended assembly procedure is gold-eutectic die attach at 400°C and either wedge or ball bonding using 0.7 mil gold wire.^[1] See APPLICATIONS section, "Chip Use". ## **Typical Biasing Configuration** #### **Features** - Cascadable 50 Ω Gain Block - Low Operating Voltage (3.5 V typical V d) - 3 dB Bandwidth: DC to 1.0 GHz - High Gain: 19.5 dB Typical at 0.5 GHz - Low Noise Figure: 2.8 dB Typical at 0.5 GHz ## Chip Outline [1] #### Note: This chip contains additional biasing options. The performance specified applies only to the bias option whose bond pads are indicated on the chip outline. Refer to the APPLICATIONS section "Silicon MMIC Chip Use" for additional information. ## **MSA-0600 Absolute Maximum Ratings** | Parameter | Absolute Maximum [1] | | | | | |-------------------------|----------------------|--|--|--|--| | Device Current | 50 mA | | | | | | Power Dissipation [2,3] | 200 mW | | | | | | RF Input Power | +13dBm | | | | | | Junction Temperature | 200°C | | | | | | Storage Temperature | -65 to 200 °C | | | | | Thermal Resistance [2,4]: $\theta_{jc} = 50 \,^{\circ}\text{C/W}$ #### Notes: - 1. Permanent damage may occur if any of these limits are exceeded. - 2. TMounting Surface $(T_{MS}) = 25$ °C. - 3. Derate at 20 mW/°C for TMountingÊ Surface > 190°C. - 4. The small spot size of this technique results in a higher, though more accurate determination of θjc than do alternate methods. See MEASUREMENTS section "Thermal Resistance" for more information. # Electrical Specifications [1], $T_A = 25^{\circ}C$ | Symbol | Parameters and Test Conditions $^{[2]}$: $I_d = 16$ | Units | Min. | Тур. | Max. | | |-------------------|--|--------------------|-------|------|-------|-----| | GP | Power Gain (S 21 ²) | f = 0.1 GHz | d B | | 20.5 | | | ΔGP | Gain Flatness | f = 0.1 to 0.6 GHz | dB | | ± 0.7 | | | f _{3 dB} | 3 dB Bandwidth | | GHz | | 1.0 | | | VSWR | Input VSWR | f = 0.1 to 1.5 GHz | | | 1.9:1 | | | | Output VSWR | f = 0.1 to 1.5 GHz | | | 1.8:1 | | | NF | 50 Ω Noise Figure | f=0.5 GHz | dB | | 2.8 | | | P _{1 dB} | Output Power at 1 dB Gain Compression | f = 0.5 GHz | dBm | | 2.0 | | | IP ₃ | Third Order Intercept Point | f = 0.5 GHz | dBm | | 14.5 | | | t _D | Group Delay | f=0.5 GHz | psec | | 200 | | | V _d | Device Voltage | | V | 3.1 | 3.5 | 3.9 | | dV/dT | Device Voltage Temperature Coefficient | | mV/°C | | -8.0 | | ## Notes: - The recommended operating current range for this device is 12 to 30 mA. Typical performance as a function of current is on the following page. - 2. RF performance of the chip is determined by packaging and testing 10 devices per wafer in a dual ground configuration. ## **Part Number Ordering Information** | Part Number | Devices Per Tray | | | | | |--------------|------------------|--|--|--|--| | MSA-0600-GP4 | 100 | | | | | ## MSA-0600 Typical Scattering Parameters[1] ($Z_0 = 50 \Omega$, $T_A = 25$ °C, Id = 16 mA) | Freg. | S | 11 | | S ₂₁ | | S ₁₂ | | | S 22 | | | |-------|-----|------|------|-----------------|-----|-----------------|------|-----|------|------|------| | GHz | Mag | Ang | dB | Mag | Ang | dB | Mag | Ang | Mag | Ang | k | | 0.1 | .05 | -148 | 20.6 | 10.66 | 173 | -23.3 | .068 | 4 | .05 | - 67 | 1.05 | | 0.2 | .07 | -134 | 20.4 | 10.48 | 166 | -23.1 | .070 | 8 | .09 | - 91 | 1.04 | | 0.3 | .09 | -125 | 20.2 | 10.28 | 159 | -22.6 | .074 | 13 | .13 | -102 | 1.01 | | 0.4 | .11 | -121 | 20.0 | 10.01 | 151 | -22.4 | .076 | 15 | .16 | -110 | 1.00 | | 0.5 | .13 | -120 | 19.7 | 9.71 | 145 | -22.1 | .078 | 17 | .20 | -117 | 0.98 | | 0.6 | .15 | -119 | 19.4 | 9.34 | 140 | -21.8 | .081 | 20 | .22 | -124 | 0.97 | | 0.8 | .19 | -121 | 18.7 | 8.60 | 123 | -20.7 | .092 | 25 | .25 | -136 | 0.93 | | 1.0 | .25 | -123 | 17.9 | 7.82 | 117 | -19.8 | .102 | 26 | .28 | -148 | 0.90 | | 1.5 | .32 | -134 | 15.7 | 6.10 | 96 | -18.3 | .122 | 29 | .29 | -168 | 0.89 | | 2.0 | .40 | -149 | 13.5 | 4.73 | 79 | -17.4 | .136 | 27 | .26 | 175 | 0.91 | | 2.5 | .45 | -157 | 11.6 | 3.79 | 70 | -16.9 | .142 | 30 | .23 | 169 | 0.97 | | 3.0 | .49 | -171 | 9.9 | 3.12 | 61 | -16.6 | .148 | 28 | .19 | 168 | 1.03 | | 3.5 | .51 | -174 | 8.3 | 2.60 | 51 | -16.4 | .152 | 25 | .16 | 173 | 1.10 | | 4.0 | .51 | 179 | 6.9 | 2.21 | 43 | -16.3 | .153 | 26 | .12 | -170 | 1.22 | | 4.5 | .51 | 170 | 5.7 | 1.93 | 37 | -16.0 | .159 | 24 | .10 | -149 | 1.31 | | 5.0 | .51 | 162 | 4.7 | 1.71 | 29 | -15.9 | .161 | 24 | .11 | -126 | 1.41 | #### Note: # **Typical Performance, T_A = 25°C** (unless otherwise noted) Figure 1. Typical Power Gain vs. Frequency, TA =25°C, ld = 16 mA. Figure 2. Power Gain vs. Current. Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Mounting Surface Temperature, f = 0.5 GHz, Id = 16 mA. Figure 4. Output Power at 1 dB Gain Compression vs. Frequency. Figure 5. Noise Figure vs. Frequency. ^{1.} S-parameters are de-embedded from 70 mil package measured data using the package model found in the DEVICE MODELS section. # **MSA-0600 Chip Dimensions** For product information and a complete list of distributors, please go to our web site: www.avagotech.com