

2.5/3.3V ECL Triple D Flip-Flop with Set and Reset

MC100ES6030

The MC100ES6030 is a triple master-slave D flip-flop with differential outputs. When the clock input is low, data enters the master latch and transfers to the slave during a positive transition on the clock input.

Each flip-flop has individual Reset inputs while the Set input is shared. The Set and Reset inputs are asynchronous and override the clock inputs.

Features

- 1.2 GHz minimum toggle frequency
- · 450 ps typical propagation delay
- LVPECL operating range: $V_{CC} = 2.375 \text{ V}$ to 3.8 V, $V_{EE} = 0 \text{ V}$
- LVECL operating range: $V_{CC} = 0 \text{ V}$, $V_{EE} = -2.375 \text{ V}$ to -3.8 V
- 20-lead SOIC package
- Ambient temperature range -40°C to +85°C

ORDERING INFORMATION

Device	Package
MC100ES6030DW	SO-20
MC100ES6030DWR2	SO-20

Q1 Q1 V_{CC} V_{CC} V_{CC} 12 18 17 16 14 Q Q Q Q Q S S S 1 5 10 2 6 8 9 S012 D0 CLK0 D1 CLK1 R1 D2 CLK2 R2

Figure 1. 20-Lead Pinout (Top View) and Logic Diagram

PIN DESCRIPTION

PIN	FUNCTION
D0-D2	ECL Data Inputs
R0-R2	ECL Reset Inputs
CLK0-CLK2	ECL Clock Inputs
S012	ECL Common Set Input
Q0-Q2, Q0-Q2	ECL Differential Data Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply

TRUTH TABLE

R	S	D	CLK	Q	Q
L	L	L	Z	L	Н
L	L	Н	Z	Н	L
Н	L	Х	Х	L	Н
L	Н	Х	Х	Н	L
Н	Н	Х	X	Undef	Undef

Z = LOW to HIGH Transition

X = Don't Care

Table 1. GENERAL SPECIFICATIONS

Charact	Value					
Internal Input Pulldown Resistor	TBD					
Internal Input Pullup Resistor	TBD					
ESD Protection	TBD TBD TBD					
θ _{JA} Thermal Resistance (Junction-to-Ambient)	TBD TBD					
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test						

Table 2. ABSOLUTE MAXIMUM RATINGS^a

Symbol	Rating	Conditions	Rating	Units
V _{SUPPLY}	Power Supply Voltage	Difference between V _{CC} & V _{EE}	3.9	V
V _{IN}	Input Voltage	V_{CC} - $V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} - 0.3	V V
l _{out}	Output Current	Continuous Surge	50 100	mA mA
T _A	Operating Temperature Range		-40 to +85	°C
T _{store}	Storage Temperature Range		-65 to +150	°C

a Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 3. DC CHARACTERISTICS ($V_{CC} = 0 \text{ V}, V_{EE} = -2.5 \text{ V} \pm 5\% \text{ or } -3.8 \text{ V to } -3.135 \text{ V}; V_{CC} = 2.5 \text{ V} \pm 5\% \text{ or } 3.135 \text{ V to } 3.8 \text{ V}, V_{EE} = 0 \text{ V}$

		-40°C			0°C to 85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		TBD			TBD		mA
V _{OH}	Output HIGH Voltage ^a	V _{CC} -1085	V _{CC} -1005	V _{CC} -880	V _{CC} -1025	V _{CC} -955	V _{CC} -880	mV
V _{OL}	Output LOW Voltage ^a	V _{CC} -1830	V _{CC} -1695	V _{CC} -1555	V _{CC} -1810	V _{CC} -1705	V _{CC} -1620	mV
V _{IH}	Input HIGH Voltage	V _{CC} -1165		V _{CC} -880	V _{CC} -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	mV
I _{IN}	Input Current			± 150			±150	μV

a Outputs are terminated through a 50Ω resistor to V_{CC} -2 volts. Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported, but the power consumption of the device will increase.

Table 4. AC CHARACTERISTICS ($V_{CC} = 0 \text{ V}, V_{EE} = -2.5 \text{ V} \pm 5\% \text{ or } -3.8 \text{ V to } -3.135 \text{ V}; V_{CC} = 2.5 \text{ V} \pm 5\% \text{ or } 3.135 \text{ V to } 3.8 \text{ V}, V_{EE} = 0 \text{ V}$)

			-40°C			25°C			85°C			
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		1.2			1.2			1.2			GHz
t _{PLH} t _{PHL}	Propagation Delay to Output	CLK S, R					600					ps
t _s t _h	Setup Time Hold Time		150 200	0 100		150 200	0 100		150 200	0 100		ps ps
t _{RR}	Set/Reset Recovery		200	100		200	100		200	100		ps
t _{PW}	Minimum Pulse Width	CLK S, R	400 650			400 650			400 650			ps ps
t _{JITTER}	Cycle-to-Cylce Jitter			< 2			< 2			< 2		ps
t _r /t _f	Output Rise/Fall Time (20%-8	80%)	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ps

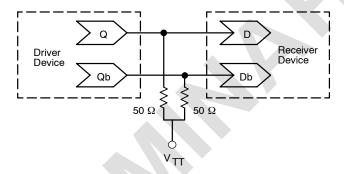
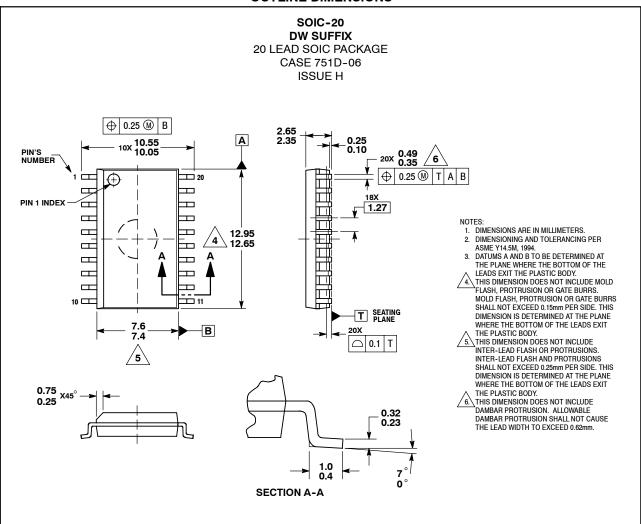



Figure 2. Typical Termination for Output Driver and Device Evaluation

OUTLINE DIMENSIONS

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

