ON Semiconductor ### Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, ON Semiconductor® ## FDS8858CZ # **Dual N & P-Channel PowerTrench® MOSFET** N-Channel: 30V, 8.6A, 17.0m Ω P-Channel: -30V, -7.3A, 20.5m Ω #### **Features** Q1: N-Channel ■ Max $r_{DS(on)} = 17m\Omega$ at $V_{GS} = 10V$, $I_D = 8.6A$ ■ Max $r_{DS(on)} = 20m\Omega$ at $V_{GS} = 4.5V$, $I_D = 7.3A$ Q2: P-Channel ■ Max $r_{DS(on)} = 20.5 m\Omega$ at $V_{GS} = -10 V$, $I_D = -7.3 A$ ■ Max $r_{DS(on)} = 34.5 \text{m}\Omega$ at $V_{GS} = -4.5 \text{V}$, $I_D = -5.6 \text{A}$ ■ High power and handing capability in a widely used surface mount package ■ Fast switching speed # **General Description** These dual N and P-Channel enhancement mode power MOSFETs are produced using ON Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance. These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required. #### **Applications** - Inverter - Synchronous Buck #### MOSFET Maximum Ratings T_A = 25°C unless otherwise noted | Symbol | Parameter | | | Q1 | Q2 | Units | |-----------------------------------|--|-----------------------|-----------|--------|------|-------| | V _{DS} | Drain to Source Voltage | | | 30 | -30 | V | | V _{GS} | Gate to Source Voltage | | | ±20 | ±25 | V | | I _D | Drain Current - Continuous | $T_A = 25^{\circ}C$ | | 8.6 | -7.3 | ۸ | | | - Pulsed | | | 20 | -20 | A | | E _{AS} | Single Pulse Avalanche Energy | | (Note 3) | 50 | 11 | mJ | | | Power Dissipation for Dual Operation | | | 2 | .0 | | | P_{D} | Power Dissipation for Single Operation | $T_A = 25$ °C | (Note 1a) | 1 | .6 | W | | | | T _A = 25°C | (Note 1c) | 0.9 | | | | T _J , T _{STG} | Operating and Storage Junction Temperature | Range | | -55 to | +150 | °C | #### **Thermal Characteristics** | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | (Note 1) | 40 | °C/W | |-------------------|---|-----------|----|------| | R _{A.IA} | Thermal Resistance, Junction to Ambient | (Note 1a) | 78 | C/VV | #### **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |----------------|-----------|---------|-----------|------------|------------| | FDS8858CZ | FDS8858CZ | SO-8 | 13" | 12mm | 2500 units | # **Electrical Characteristics** $T_J = 25^{\circ}C$ unless otherwise noted | Symbol | Parameter | Test Conditions | Туре | Min | Тур | Max | Units | |--------------------------------------|--|--|----------|-----------|-----------|------------|-------| | Off Chara | acteristics | | | | | | | | BV _{DSS} | Drain to Source Breakdown Voltage | $I_D = 250\mu A, V_{GS} = 0V$
$I_D = -250\mu A, V_{GS} = 0V$ | Q1
Q2 | 30
-30 | | | ٧ | | $\frac{\Delta BV_{DSS}}{\Delta T_J}$ | Breakdown Voltage Temperature
Coefficient | I_D = 250μA, referenced to 25°C I_D = -250μA, referenced to 25°C | Q1
Q2 | | 22
-22 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{DS} = 24V, V_{GS} = 0V$
$V_{DS} = -24V, V_{GS} = 0V$ | Q1
Q2 | | | 1
-1 | μА | | I _{GSS} | Gate to Source Leakage Current | $V_{GS} = \pm 20V, V_{DS} = 0V$
$V_{GS} = \pm 25V, V_{DS} = 0V$ | Q1
Q2 | | | ±10
±10 | μА | | V _{GS(th)} | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, \ I_D = 250 \mu A$
$V_{GS} = V_{DS}, \ I_D = -250 \mu A$ | Q1
Q2 | 1
-1 | 1.6
-2.1 | 3
-3 | V | |--|---|---|----------|---------|----------------------|----------------------|-------| | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage
Temperature Coefficient | $I_D = 250\mu\text{A}$, referenced to 25°C
$I_D = -250\mu\text{A}$, referenced to 25°C | Q1
Q2 | | -5.4
6.0 | | mV/°C | | | | $V_{GS} = 10V, I_D = 8.6A$
$V_{GS} = 4.5V, I_D = 7.3A$
$V_{GS} = 10V, I_D = 8.6A, T_J = 125^{\circ}C$ | Q1 | | 12.4
15.2
17.7 | 17.0
20.0
24.3 | mO. | | r _{DS(on)} | Static Drain to Source On Resistance | $V_{GS} = -10V$, $I_D = -7.3A$
$V_{GS} = -4.5V$, $I_D = -5.6A$
$V_{GS} = -10V$, $I_D = -7.3A$, $T_J = 125$ °C | Q2 | | 17.1
26.5
24.0 | 20.5
34.5
28.8 | mΩ | | g _{FS} | Forward Transconductance | $V_{DS} = 5V, I_{D} = 8.6A$
$V_{DS} = -5V, I_{D} = -7.3A$ | Q1
Q2 | | 27
21 | | S | ## **Dynamic Characteristics** | C _{iss} | Input Capacitance | Q1
V _{DS} = 15V, V _{GS} = 0V, f = 1MHZ | Q1
Q2 | 905
1675 | 1205
2230 | pF | |------------------|------------------------------|---|----------|-------------|--------------|----| | C _{oss} | Output Capacitance | Q2 | Q1
Q2 | 180
290 | 240
390 | pF | | C _{rss} | Reverse Transfer Capacitance | $V_{DS} = -15V, V_{GS} = 0V, f = 1MHZ$ | Q1
Q2 | 110
260 | 165
390 | pF | | R _g | Gate Resistance | f = 1MHz | Q1
Q2 | 1.3
4.4 | | Ω | ## **Switching Characteristics** | t _{d(on)} | Turn-On Delay Time | Q1 | Q1
Q2 | 7
9 | 14
18 | ns | |---------------------|-------------------------------|--|----------|------------|----------|----| | t _r | Rise Time | $V_{DD} = 15V, I_{D} = 8.6A,$
$V_{GS} = 10V, R_{GEN} = 6\Omega$ | Q1
Q2 | 3
10 | 10
20 | ns | | $t_{d(off)}$ | Turn-Off Delay Time | Q2
V _{DD} = -15V, I _D = -7.3A, | Q1
Q2 | 19
33 | 35
53 | ns | | t _f | Fall Time | $V_{GS} = -10V$, $R_{GEN} = 6\Omega$ | Q1
Q2 | 3
16 | 10
29 | ns | | Q _{g(TOT)} | Total Gate Charge | Q1 | Q1
Q2 | 17
33 | 24
46 | nC | | Q _{gs} | Gate to Source Charge | $V_{GS} = 10V, V_{DD} = 15V, I_D = 8.6A$ | Q1
Q2 | 2.7
6.1 | | nC | | Q _{gd} | Gate to Drain "Miller" Charge | $V_{GS} = -10V, V_{DD} = -15V, I_D = -7.3A$ | Q1
Q2 | 3.4
8.5 | | nC | # **Electrical Characteristics** $T_J = 25^{\circ}C$ unless otherwise noted | Symbol | Parameter | Test Conditions | Туре | Min | Тур | Max | Units | | | |-----------------|---------------------------------------|--|----------|-----|------------|-------------|-------|--|--| | Drain-Sou | Orain-Source Diode Characteristics | | | | | | | | | | V _{SD} | Source to Drain Diode Forward Voltage | $V_{GS} = 0V, I_S = 8.6A$ (Note $V_{GS} = 0V, I_S = -7.3A$ (Note | , | | 0.8
0.9 | 1.2
-1.2 | V | | | | t _{rr} | Reverse Recovery Time | Q1
I _F = 8.6A, di/dt = 100A/s | Q1
Q2 | | 25
28 | 38
42 | ns | | | | Q _{rr} | Reverse Recovery Charge | Q2 $I_F = -7.3A$, di/dt = 100A/s | Q1
Q2 | | 19
22 | 29
33 | nC | | | #### Notes: 1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. a) 78°C/W when mounted on a 0.5 in² pad of 2 oz copper ωψ ω b) 125°C/W when mounted on a 0.02 in² pad of 2 oz copper minimun pad Scale 1:1 on letter size paper - 2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%. - 3. Starting $T_J = 25^{\circ}C$, N-ch: L = 1mH, $I_{AS} = 10A$, $V_{DD} = 27V$, $V_{GS} = 10V$; P-ch: L = 1mH, $I_{AS} = -4.7A$, $V_{DD} = -27V$, $V_{GS} = -10V$. #### Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted Figure 1. On-Region Characteristics Figure 3. Normalized On-Resistance vs Junction Temperature Figure 5. Transfer Characteristics Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage Figure 4. On-Resistance vs Gate to Source Voltage Figure 6. Source to Drain Diode Forward Voltage vs Source Current #### Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted Figure 7. Gate Charge Characteristics t_{AV}, TIME IN AVALANCHE(ms) Figure 9. Unclamped Inductive Switching Capability Figure 11. Maximum Continuous Drain Current vs Ambient Temperature Figure 8. Capacitance vs Drain to Source Voltage Figure 10. Gate Leakage Current vs Gate to Source Voltage Figure 12. Forward Bias Safe Operating Area ## Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted Figure 13. Single Pulse Maximum Power Dissipation Figure 14. Transient Thermal Response Curve #### Typical Characteristics (Q2 P-Channel)T_J = 25°C unless otherwise noted Figure 15. On- Region Characteristics Figure 17. Normalized On- Resistance vs Junction Temperature Figure 19. Transfer Characteristics Figure 16. Normalized on-Resistance vs Drain Current and Gate Voltage Figure 18. On-Resistance vs Gate to Source Voltage Figure 20. Source to Drain Diode Forward Voltage vs Source Current #### Typical Characteristics(Q2 P-Channel)T_J = 25°C unless otherwise noted Figure 21. Gate Charge Characteristics Figure 23. Unclamped Inductive Switching Capability Figure 25. Maximum Continuous Drain Current vs Ambient Temperature Figure 22. Capacitance vs Drain to Source Voltage Figure 24. Gate Leakage Current vs Gate to Source Voltage Figure 26. Forward Bias Safe Operating Area ## Typical Characteristics(Q2 P-Channel) T_J = 25°C unless otherwise noted Figure 27. Single Pulse Maximum Power Dissipation Figure 28. Transient Thermal Response Curve ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative