International IOR Rectifier

HFA04SD60S

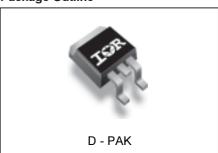
Ultrafast, Soft Recovery Diode

Features

- · Ultrafast Recovery Time
- · Ultrasoft Recovery
- Very Low I_{RRM}
- Very Low Q_{rr}
- · Guaranteed Avalanche
- · Specified at Operating Temperature

Benefits

- · Reduced RFI and EMI
- · Reduced Power Loss in Diode and **Switching Transistor**
- · Higher Frequency Operation
- · Reduced Snubbing
- · Reduced Parts Count


Description/ Applications

These diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems. The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for freewheeling, flyback, power converters, motor drives, and other applications where high speed and reduced switching losses are design requirements.

 $t_{rr} = 38ns$ $I_{F(AV)} = 4Amp$

 $V_{R} = 600V$

Package Outline

Absolute Maximum Ratings

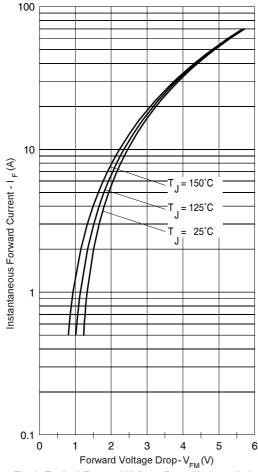
	Parameters	Max	Units
V _{RRM}	Cathode-to-Anode Voltage	600	V
I _{F(AV)}	Continuous Forward Current	4	A
	$T_C = 100$ °C		
I _{FSM}	Single Pulse Forward Current	25	
I _{FRM}	Peak Repetitive Forward Current	16	
	$T_{C} = 116^{\circ}C$		
P_D	Maximum Power Dissipation	10	W
	$T_{C} = 100^{\circ}C$		
T _J , T _{STG}	Operating Junction and Storage Temperatures	- 55 to 150	°C

www.vishay.com Document Number: 93031

Bulletin PD-20617 rev. D 10/06

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions
V_{BR}, V_{r}	Breakdown Voltage, Blocking Voltage	600	-	-	V	Ι _R = 100μΑ
V _F	Forward Voltage	-	1.5	1.8	٧	I _F = 4A
	See Fig. 1	1	1.8	2.2	V	I _F = 8A
		-	1.4	1.7	V	I _F = 4A, T _J = 125°C
I _R	Max. Reverse Leakage Current	-	0.17	3.0	μA	$V_R = V_R$ Rated
		-	44	300	μA	$T_J = 125^{\circ}C$, $V_R = 0.8 \times V_R$ Rated
C _T	Junction Capacitance	-	4	8	pF	V _R = 200V
Ls	Series Inductance	-	8.0	-	nH	Measured lead to lead 5mm from package body


Dynamic Recovery Characteristics @ T_J = 25°C (unless otherwise specified)

,	•		$\overline{}$	•	,		. ,
	Parameters	Min	Тур	Max	Units	Test Conditions	S
t _{rr}	Reverse Recovery Time	-	17	-	ns	$I_F = 1.0A$, $di_F/dt = 2$	200A/µA, V _R = 30V
		-	28	42		T _J = 25°C	I _F =4A
		•	38	57		T _J = 125°C	V _R = 200V
I _{RRM}	Peak Recovery Current	-	2.9	5.2	Α	T _J = 25°C	di _F /dt = 200A/µs
		-	3.7	6.7		T _J = 125°C	
Q _{rr}	Reverse Recovery Charge	-	40	60	nC	T _J = 25°C	
		-	70	105		T _J = 125°C	
di _{(rec)M} /dt	Rate of Fall of recovery Current	-	280	-	A/µs	T _J = 25°C	
		-	235	-		T _J = 125°C	

Thermal - Mechanical Characteristics

	Parameters	Min	Тур	Max	Units
TJ	Max. Junction Temperature Range	-	-	- 55 to 150	°C
T _{Stg}	Max. Storage Temperature Range	-	-	- 55 to 150	
Ts	Soldering Temperature, 10 sec	-	-	240	
R_{thJC}	Thermal Resistance, Junction to Case	-	-	5.0	°C/W
R _{thJA} ①	Thermal Resistance, Junction to Ambient	-	-	80	
VVt	Weight	-	2.0	-	g
		-	0.07	-	(oz)
Т	Mounting Torque	6.0	-	12	Kg*cm
		5.0	-	10	lbf*in

① Typical Socket Mount

1000 T_J = 150°C 100 Reverse Current - I R (µA) 125°C 10 -25°C 0.1 0.01 0.001 100 200 300 400 500 Reverse Voltage- $V_R(V)$

Fig. 2-Typical Values Of Reverse Current Vs. Reverse Voltage

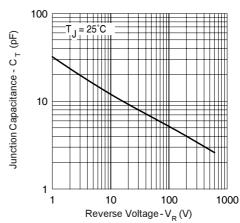


Fig. 1-Typical Forward Voltage Drop Characteristics

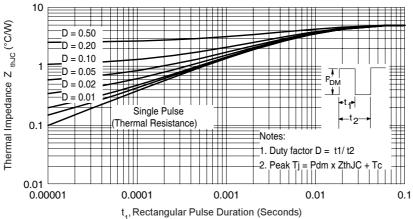
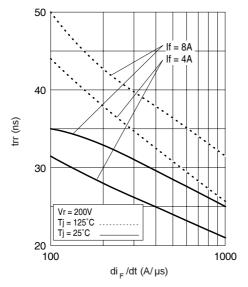



Fig. 4 - Max. Thermal Impedance Z_{thJC} Characteristics

 $Fig.\,5-Typical\,Reverse\,Recovery\,\,vs.\,di_{_F}/dt$

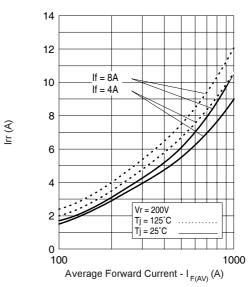


Fig. 6 - Typical Recovery Current vs. di $_{\rm F}/{\rm dt}$

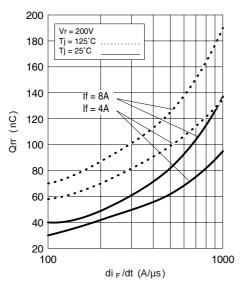


Fig. 7 - Typical Stored Charge vs. di _F/dt

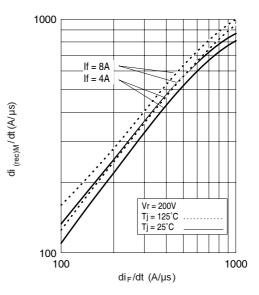


Fig. 8 - Typical di $_{(rec)M}/dt$ vs. di $_F/dt$

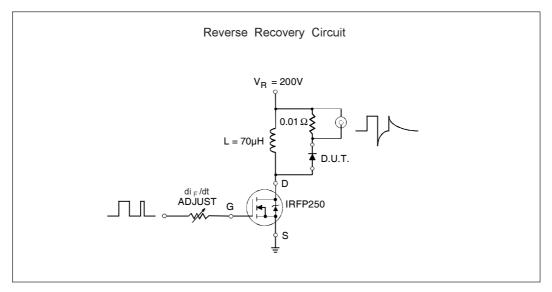
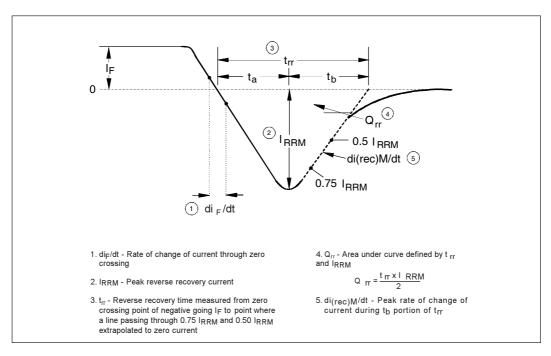
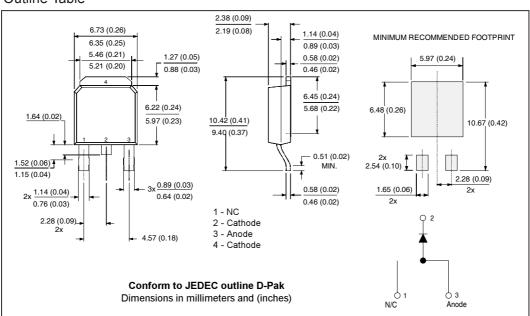
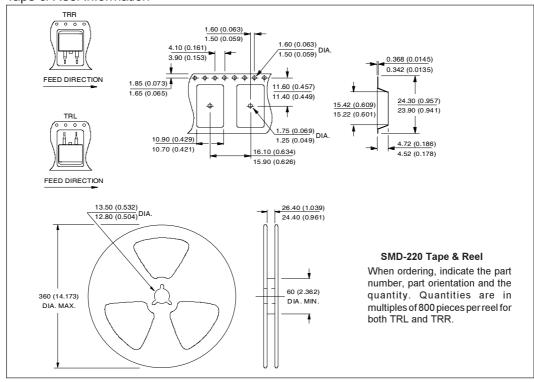


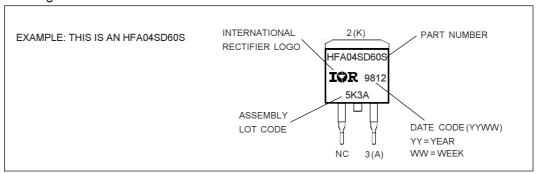
Fig. 9- Reverse Recovery Parameter Test Circuit

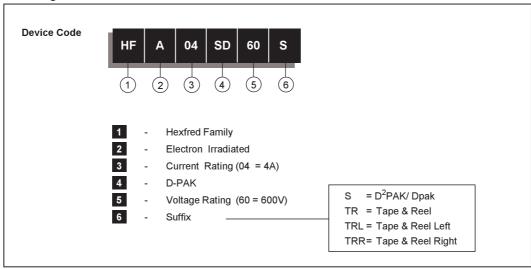




Fig. 10 - Reverse Recovery Waveform and Definitions

Document Number: 93031 www.vishay.com

Outline Table


Tape & Reel Information


Document Number: 93031 www.vishay.com

Marking Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309

10/06

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1