MKW2xD Data Sheet

Supports MKW24D512V, MKW22D512V, MKW21D512V, and MKW21D256V Products

The MKW2xD is a low power, compact integrated device consisting of:

- A high-performance 2.4 GHz IEEE 802.15.4 compliant radio transceiver
- A powerful ARM Cortex-M4 MCU system with connectivity
- Precision mixed signal analog peripherals

The MKW2xD family of devices are used to easily enable connectivity based on the IEEE 802.15.4 Standard.

Core Processor and Memories

- 50 MHz Cortex-M4 CPU with DSP capabilities
- Up to 512 KB of flash memory
- Up to 64 KB of SRAM

Typical Applications

- Smart Energy 1.x
- ZigBee Home Automation
- ZigBee Healthcare
- ZigBee RF4CE
- ZigBee Light Link
- Thread
- Home Area Networks consisting of
 - Meters
 - Gateways
 - In-home displays
 - Connected appliances
- Networked Building Control and Home Automations
 with
 - Lighting Control
 - HVAC
 - Security

Peripherals

- USB
- Cryptographic Acceleration
- 16-bit ADC
- 12-bit DAC
- Flexible timers

Radio transceiver performance

- Up to –102 dBm receiver sensitivity
- +8 dBm maximum transmit output power
- Up to 58 dBm channel rejection
- Current consumption is minimized with peak transmit current of 17 mA at 0 dBm output power, and peak receive current of 15 mA in Low Power Preamble Search mode.

Package and Operating Characteristics

- Packaged in an 8 x 8 mm LGA with 56 contacts
- Voltage range: 1.8 V to 3.6 V
- Ambient temperature range: -40°C to 105°C

MKW2xDxxxVHA5

64 LQFP 8.0x8.0x0.91 mm P 0.5 mm

Ordering Information

Device	Operatin g Temp Range (T _A)	Package	Memory Options	Description
MKW21D256VHA5(R)	-40 to 105°C	8x8 LGA (R: tape and reel)	32 KB SRAM, 256 KB flash	Additional FlexMemory with up to 64 KB FlexNVM and up to 4 KB FlexRAM. No USB.
MKW21D512VHA5(R)	-40 to 105°C	8x8 LGA (R: tape and reel)	64 KB SRAM, 512 KB flash	Supports higher memory option and additional GPIO. No USB. No FlexNVM or FlexRAM.
MKW22D512VHA5(R)	-40 to 105°C	8x8 LGA (R: tape and reel)	64 KB SRAM, 512 KB flash	Supports full speed USB 2.0. No FlexNVM or FlexRAM.
MKW24D512VHA5(R)	-40 to 105°C	8x8 LGA (R: tape and reel)	64 KB SRAM, 512 KB flash	Supports Smart Energy 2.0 and full-speed USB 2.0. No FlexNVM or FlexRAM.

Related Resources

Туре	Description	Resource
Selector Guide	The Kinetis MCUs Product Selector is a web-based tool that features interactive application wizards and a dynamic product selector.	Product Selector
Fact Sheet	The Fact Sheet gives overview of the product key features and its uses.	KW2X Fact Sheet
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	MKW2xDRM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document.
Package drawing	Package dimensions are provided in package drawings.	98ASA00393D ¹

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

Table of Contents

1	Feat	ures4
	1.1	Block diagram4
	1.2	Radio features4
	1.3	Microcontroller features5
2	Tran	sceiver description8
	2.1	Key specifications8
	2.2	RF interface and usage9
		2.2.1 Clock output feature
	2.3	Transceiver functions10
		2.3.1 Receive
		2.3.2 Transmit
		2.3.3 Clear channel assessment (CCA), energy
		detection (ED), and link quality indicator
		(LQI)11
		2.3.4 Packet processor12
		2.3.5 Packet buffering13
	2.4	Dual PAN ID14
3	Syst	em and power management15
	3.1	Modes of operation15
	3.2	Power management15
4	Radi	o Peripherals16
	4.1	Clock output (CLK_OUT)16
	4.2	General-purpose input output (GPIO)16
	4.3	Serial peripheral interface (SPI)18
		4.3.1 Features
	4.4	Antenna diversity
	4.5	RF Output Power Distribution
5	MKV	V2xD operating modes
	5.1	Transceiver Transmit Current Distribution21
6		22 v2xD electrical characteristics
	6.1	Radio recommended operating conditions
	6.2	Ratings
		6.2.1 Thermal handling ratings
		6.2.2 Moisture handling ratings23
		6.2.3 ESD handling ratings
_		6.2.4 Voltage and current operating ratings24
7		J Electrical characteristics
	7.1	Maximum ratings
	7.2	AC electrical characteristics
	7.3	Nonswitching electrical specifications26

		7.3.1	Voltage and current operating requirements26
		7.3.2	LVD and POR operating requirements27
		7.3.3	Voltage and current operating behaviors28
		7.3.4	Power mode transition operating behaviors28
		7.3.5	Power consumption operating behaviors29
		7.3.6	EMC radiated emissions operating
			behaviors
		7.3.7	Designing with radiated emissions in mind34
		7.3.8	Capacitance attributes
	7.4	Switch	ing specifications34
		7.4.1	Device clock specifications
		7.4.2	General switching specifications35
	7.5	Therm	al specifications36
		7.5.1	Thermal operating requirements
		7.5.2	Thermal attributes
	7.6	Periph	eral operating requirements and behaviors37
		7.6.1	Core modules
		7.6.2	System modules 40
		7.6.3	Clock modules 40
		7.6.4	Memories and memory interfaces45
		7.6.5	Security and integrity modules49
		7.6.6	Analog50
		7.6.7	Timers57
		7.6.8	Communication interfaces 57
8	Trans	sceiver	Electrical Characteristics
	8.1	DC ele	ectrical characteristics66
	8.2	AC ele	ectrical characteristics67
	8.3	SPI tin	ning: R_SSEL_B to R_SCLK68
	8.4	SPI tin	ning: R_SCLK to R_MOSI and R_MISO69
9	Cryst	al oscil	lator reference frequency69
	9.1	Crysta	I oscillator design considerations69
	9.2	Crysta	I requirements69
10	Pin d	iagram	s and pin assignments71
	10.1	MKW2	21D256/MKW21D512 Pin Assignment71
	10.2	MKW2	2/24D512V Pin Assignment72
	10.3	Pin as	signments72
11	Dime	nsions.	
	11.1	Obtain	ing package dimensions76
12	Revis	sion His	story

1 Features

This section provides a simplified block diagram and highlights the device features.

1.1 Block diagram

Figure 1. MKW2xD simplified block diagram

1.2 Radio features

• Fully compliant 802.15.4 Standard transceiver supports 250 kbps data rate with O-QPSK modulation in 5.0 MHz channels with direct sequence spread-spectrum (DSSS) encode and decode

- Operates on one of 16 selectable channels in the 2.4 GHz frequency ISM band
- Programmable output power
- Supports 2.36 to 2.4 GHz Medical Band (MBAN) frequencies with same modulation as IEEE 802.15.4
- Hardware acceleration for IEEE® 802.15.4 2006 packet processing
 - Random number generator
 - Support for dual PAN mode
- 32 MHz crystal reference oscillator with on board trim capability to supplement external load capacitors
- Programmable frequency clock output (CLK_OUT)
- Control port for Antenna Diversity mode
- Clocks
 - 32 MHz crystal oscillator
 - Internal 1 kHz low power oscillator
 - DC to 32 MHz external square wave input clock
- Small RF footprint
 - Differential input/output port used with external balun
 - Integrated transmit/receive switch
 - Supports single ended and antenna diversity options
 - Low external components count
 - Supports external PA and LNA

1.3 Microcontroller features

- Core:
 - ARM Cortex-M4 Core at 50 MHz (1.25 MIPS/MHz)
 - Supports DSP instructions

- Nested vectored interrupt controller (NVIC)
- Asynchronous wake-up interrupt controller (AWIC)
- Debug and trace capability
- 2-pin serial wire debug (SWD)
- IEEE 1149.1 Joint Test Action Group (JTAG)
- IEEE 1149.7 compact JTAG (cJTAG)
- Trace port interface unit (TPIU)
- Flash patch and breakpoint (FPB)
- Data watchpoint and trace (DWT)
- Instrumentation trace macrocell (ITM)
- Enhanced trace macrocell (ETM)
- System and power management:
 - Software and hardware watchdog with external monitor pin
 - DMA controller with 16 channels
 - Low-leakage wake-up unit (LLWU)
 - Power management controller with 10 different power modes
 - Non-maskable interrupt (NMI)
 - 128-bit unique identification (ID) number per chip
- Memories and memory interfaces:
 - Up to 512 KB Program Flash
 - Up to 64 KB of SRAM
 - In MKW21D256, FlexMemory with up to 64 KB FlexNVM and up to 4 KB FlexRAM can be partitioned.
 - EEPROM has endurance of 10 million cycles over full voltage and temperature range and read-while-write capability
 - Flash security and protection features
 - Serial flash programming interface (EzPort)

- Clocks
 - Multi-purpose clock generator
 - PLL and FLL operation
 - Internal reference clocks (32 kHz or 2 MHz)
 - Three separate crystal oscillators
 - 3 MHz to 32 MHz crystal oscillator for MCU
 - 32 kHz to 40 kHz crystal oscillator for MCU or RTC
 - 32 MHz crystal oscillator for Radio
 - Internal 1 kHz low power oscillator
 - DC to 50 MHz external square wave input clock
- Security and integrity
 - Hardware CRC module to support fast cyclic redundancy checks
 - Tamper detect and secure storage
 - Hardware random-number generator
 - Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms
 - 128-bit unique identification (ID) number per chip
- Analog
 - 16-bit SAR ADC
 - High-speed Analog comparator (CMP) with 6-bit DAC
- Timers
 - Up to 12 channels; 7 channels support external connections; 5 channels are internal only
 - Carrier modulator timer (CMT)
 - Programmable delay block (PDB)
 - 1x4ch programmable interrupt timer (PIT)

- Low-power timer (LPT)
- FlexTimers that support general-purpose PWM for motor control functions
- Communications
 - One SPI
 - Two I²C with SMBUS support
 - Three UARTs (w/ ISO7816, IrDA, and hardware flow control)
 - One USB On-The-Go Full Speed
- Human-machine interface
 - GPIO with pin interrupt support, DMA request capability, digital glitch filter, and other pin control options
- Operating characteristics
 - Voltage range 1.8 V 3.6 V
 - Flash memory programming down to 1.8 V
 - Temperature range (TA) -40 to 105°C

2 Transceiver description

2.1 Key specifications

MKW2xD meets or exceeds all IEEE 802.15.4 performance specifications applicable to 2.4 GHz ISM and MBAN (Medical Band Area Network) bands. Key specifications for MKW2xD are:

- ISM band:
 - RF operating frequency: 2405 MHz to 2480 MHz (center frequency range)
 - 5 MHz channel spacing
- MBAN band:
 - RF operating frequency: 2360 MHz to 2400 MHz (center frequency range)
 - MBAN channel page 9 is (2360 MHz-2390 MHz band)

- Fc = 2363.0 + 1.0 * k in MHz for k = 0, 1, 2, ...26
- MBAN channel page 10 is (2390 MHz-2400 MHz band)
 - Fc = 2390.0 + 1.0 * k in MHz for k = 0, 1, 2, ...8
- IEEE 802.15.4 Standard 2.4 GHz modulation scheme
 - Chip rate: 2000 kbps
 - Data rate: 250 kbps
 - Symbol rate: 62.5 kbps
 - Modulation: OQPSK
- Receiver sensitivity: -102 dBm, typical (@1% PER for 20 byte payload packet)
- Differential bidirectional RF input/output port with integrated transmit/receive switch
- Programmable output power from -35 dBm to +8 dBm.

2.2 RF interface and usage

The MKW2xD RF output ports are bidirectional (diplexed between receive/transmit modes) and differential enabling interfaces with numerous off-chip devices such as a balun. When using a balun, this device provides an interface to directly connect between a single-ended antenna and the MKW2xD RF ports. In addition, MKW2xD provides four output driver ports that can have both drive strength and slew rate configured to control external peripheral devices. These signals designated as ANT_A, ANT_B, RX_SWITCH, and TX_SWITCH when enabled are switched via an internal hardware state machine. These ports provide control features for peripheral devices such as:

- Antenna diversity modules
- External PAs
- External LNAs
- T/R switches

2.2.1 Clock output feature

The CLK_OUT digital output can be enabled to drive the system clock to the MCU. This provides a highly accurate clock source based on the transceiver reference oscillator. The clock is programmable over a wide range of frequencies divided down from the reference 32 MHz (see Table 2). The CLK_OUT pin will be enabled upon POR. The frequency CLK_OUT default to 4 MHz (32 MHz/8).

2.3 Transceiver functions

2.3.1 Receive

The receiver has the functionality to operate in either normal run state or low power run state that can be considered as a partial power down mode. Low power run state can save a considerable amount of current by duty-cycling some sections of the receiver lineup during preamble search and is referred to as Low Power Preamble Search mode (LPPS).

The radio receiver path is based upon a near zero IF (NZIF) architecture incorporating front end amplification, one mixed signal down conversion to IF that is programmably filtered, demodulated and digitally processed. The RF front end (FE) input port is differential that shares the same off chip matching network with the transmit path.

2.3.2 Transmit

MKW2xD transmits OQPSK modulation having power and channel selection adjustment per user application. After the channel of operation is determined, coarse and fine tuning is executed within the Frac-N PLL to engage signal lock. After signal lock is established, the modulated buffered signal is then routed to a multi-stage amplifier for transmission. The differential signals at the output of the PA (RFOUTP, RFOUTN) are converted as single ended (SE) signals with off chip components as required.

2.3.3 Clear channel assessment (CCA), energy detection (ED), and link quality indicator (LQI)

The MKW2xD supports three clear channel assessment (CCA) modes of operation including energy detection (ED) and link quality indicator (LQI). Functionality for each of these modes is as follows.

2.3.3.1 CCA mode 1

CCA mode 1 has two functions:

- To estimate the energy in the received baseband signal. This energy is estimated based on receiver signal strength indicator (RSSI).
- To determine whether the energy is greater than a set threshold.

The estimate of the energy can also be used as the Link Quality metric. In CCA Mode 1, the MKW2xD must warm up from Idle to Receive mode where RSSI averaging takes place.

2.3.3.2 CCA mode 2

CCA mode 2 detects whether there is any 802.15.4 signal transmitting in the frequency band that an 802.15.4 transmitter intends to transmit. From the definition of CCA mode 2 in the 802.15.4 standard, the requirement is to detect an 802.15.4 complied signal. Whether the detected energy is strong or not is not important for CCA mode 2.

2.3.3.3 CCA mode 3

CCA mode 3 as defined by 802.15.4 standard is implemented using a logical combination of CCA mode 1 and CCA mode 2. Specifically, CCA mode 3 operates in one of two operating modes:

- CCA mode 3 is asserted if both CCA mode 1 and CCA mode 2 are asserted.
- CCA mode 3 is asserted if either CCA mode 1 or CCA mode 2 is asserted.

This mode setting is available through a programmable register.

2.3.3.4 Energy detection (ED)

Energy detection (ED) is based on receiver signal strength indicator (RSSI) and correlator output for the 802.15.4 standard. ED is an average value of signal strength. The magnitude from this measurement is calculated from the digital RSSI value that is averaged over a 128 µs duration.

2.3.3.5 Link quality indicator (LQI)

Link quality indicator (LQI) is based on receiver signal strength indicator (RSSI) or correlator output for the 802.15.4 standard. In this mode, the RSSI measurement is done during normal packet reception. LQI computations for the MKW2xD are based on either digital RSSI or correlator peak values. This setting is executed through a register bit where the final LQI value is available 64 µs after preamble is detected. If a continuous update of LQI based on RSSI throughout the packet is desired, it can be read in a separate 8-bit register by enabling continuous update in a register bit.

2.3.4 Packet processor

The MKW2xD packet processor performs sophisticated hardware filtering of the incoming received packet to determine if the packet is both PHY- and MAC-compliant, is addressed to this device, if the device is a PAN coordinator and whether a message is pending for the sending device. The packet processor greatly reduces the packet filtering burden on software allowing it to tend to higher-layer tasks with a lower latency and smaller software footprint.

2.3.4.1 Features

- Aggressive packet filtering to enable long, uninterrupted MCU sleep periods
- Fully compliant with both 2003 and 2006 versions of the 802.15.4 wireless standard
- Supports all frame types, including reserved types
- Supports all valid 802.15.4 frame lengths
- Enables auto-Tx acknowledge frames (no MCU intervention) by parsing of frame control field and sequence number
- Supports all source and destination address modes, and also PAN ID compression
- Supports broadcast address for PAN ID and short address mode

- Supports "promiscuous" mode, to receive all packets regardless of address- and rules-checking
- Allows frame type-specific filtering (e.g., reject all but beacon frames)
- Supports SLOTTED and non-SLOTTED modes
- Includes special filtering rules for PAN coordinator devices
- Enables minimum-turnaround Tx-acknowledge frames for data-polling requests by automatically determining message-pending status
- Assists MCU in locating pending messages in its indirect queue for data-polling end devices
- Makes available to MCU detailed status of frames that fail address- or ruleschecking.
- Supports Dual PAN mode, allowing the device to exist on 2 PAN's simultaneously
- Supports 2 IEEE addresses for the device
- Supports active promiscuous mode

2.3.5 Packet buffering

The packet buffer is a 128-byte random access memory (RAM) dedicated to the storage of 802.15.4 packet contents for both TX and RX sequences. For TX sequences, software stores the contents of the packet buffer starting with the frame length byte at packet buffer address 0 followed by the packet contents at the subsequent packet buffer addresses. For RX sequences the incoming packet's frame length is stored in a register external to the packet buffer to read. This facilitates DMA transfer through the SPI. For receive packets, an LQI byte is stored at the byte immediately following the last byte of the packet (frame length +1). Usage of the packet buffer for RX and TX sequences is on a time-shared basis; receive packet data will overwrite the contents of the packet buffer. Software can inhibit receive-packet overwriting of the packet buffer contents by setting the PB_PROTECT bit. This will block RX packet overwriting, but will not inhibit TX content loading of the packet buffer via the SPI.

2.3.5.1 Features

- 128 byte buffer stores maximum length 802.15.4 packets
- Same buffer serves both TX and RX sequences
- The entire Packet Buffer can be uploaded or downloaded in a single SPI burst.
- Automatic address auto-incrementing for burst accesses
- Single-byte access mode supported.
- Entire packet buffer can be accessed in hibernate mode
- Under-run error interrupt supported

2.4 Dual PAN ID

In the past, radio transceivers designed for IEEE 802.15.4 applications allowed a device to associate to one and only one PAN (Personal Area Network) at any given time. The MKW2xD represents a high-performance SiP that includes hardware support for a device to reside in two networks simultaneously. In optional Dual PAN mode, the device alternates between the two (2) PANs under hardware or software control. Hardware support for Dual PAN operation consists of two (2) sets of PAN and IEEE addresses for the device, two (2) different channels (one for each PAN) and a programmable timer to automatically switch PANs (including on-the-fly channel changing) without software intervention. There are control bits to configure and enable Dual PAN mode, and read only bits to monitor status in Dual PAN mode. A device can be configured to be a PAN coordinator on either network, both networks or neither.

For the purpose of defining PAN in the context of Dual PAN mode, two (2) sets of network parameters are maintained; PAN0 and PAN1. PAN0 and PAN1 will be used to refer to the two (2) PANs where each parameter set uniquely identifies a PAN for Dual PAN mode. These parameters are described in Table 1.

PANO	PAN1
Channel0 (PHY_INT0, PHY_FRAC0)	Channel1 (PHY_INT1, PHY_FRAC1)
MacPANID0 (16-bit register)	MacPANID1 (16-bit register)
MacShortAddrs0 (16-bit register)	MacShortAddrs1 (16-bit register)
MacLongAddrs0 (64-bit registers)	MacLongAddrs1 (64-bit registers)
PANCORDNTR0 (1-bit register)	PANCORDNTR1 (1-bit register)

Table 1. PAN0 and PAN1 descriptions

During device initialization if Dual PAN mode is used, software will program both parameter sets to configure the hardware for operation on two (2) networks.

3 System and power management

The MKW2xD is a low power device that also supports extensive system control and power management modes to maximize battery life and provide system protection.

3.1 Modes of operation

The transceiver modes of operation include:

- Idle mode
- Doze mode
- Low power (LP) / hibernate mode
- Reset / powerdown mode
- Run mode

3.2 Power management

The MKW2xD power management is controlled through programming the modes of operation. Different modes allow for different levels of power-down and RUN operation. For the receiver, programmable power modes available are:

- Preamble search
- Preamble search sniff
- Low Power Preamble Search (LPPS)
- Fast Antenna Diversity (FAD) Preamble search
- Packet decoding

4 Radio Peripherals

The MKW2xD provides a set of I/O pins useful for suppling a system clock to the MCU, controlling external RF modules/circuitry, and GPIO.

4.1 Clock output (CLK_OUT)

MKW2xD integrates a programmable clock to source numerous frequencies for connection with various MCUs. Package pin 39 can be used to provide this clock source as required allowing the user to make adjustments per their application requirement.

The transceiver CLK_OUT pin is internally connected to the MCU EXTAL pin so that no external connection is needed to drive the MCU clock.

Care must be taken that the clock output signal does not interfere with the reference oscillator or the radio. Additional functionality this feature supports is:

- XTAL domain can be completely gated off (hibernate mode)
- SPI communication allowed in hibernate

CLK_OUT_DIV [2:0]	CLK_OUT frequency
0	32 MHz ¹
1	16 MHz ¹
2	8 MHz ¹
3	4 MHz
4	2 MHz
5	1 MHz
6	62.5 kHz
7	32.786 kHz

Table 2. CLK_OUT

1. May require high drive strength for proper signal integrity.

There is an enable/disable bit for CLK_OUT. When disabling, the clock output will optionally continue to run for 128 clock cycles after disablement. There is also be one (1) bit available to adjust the CLK_OUT I/O pad drive strength.

4.2 General-purpose input output (GPIO)

In addition to the MCU supported GPIOs, the radio supports 2 GPIO pins. All I/O pins will have the same supply voltage and depending on the supply, can vary from 1.8 V up to 3.6 V. When the pin is configured as a general-purpose output or for peripheral use, there will be specific settings required per use case. Pin configuration will be executed by software to adjust input/output direction and drive strength, capability. When the pin is configured as a general-purpose input or for peripheral use, software (see Table 3) can enable a pull-up or pull-down device. Immediately after reset, all pins are configured as high-impedance general-purpose inputs with internal pull-up devices enabled.

Features for these pins include:

- Programmable output drive strength
- Programmable output slew rate
- Hi-Z mode
- Programmable as outputs or inputs (default)

Pin function configuration	Details		Tolerance		Units
	Details	Min.	Тур.	Max.	Units
I/O buffer full drive mode ¹	Source or sink	—	±10	_	mA
I/O buffer partial drive mode ¹	Source or sink	_	±2	_	mA
I/O buffer high impedance ²	Off state	—	—	10	nA
No slew, full drive	Rise and fall time ³	2	4	6	ns
No slew, partial drive	Rise and fall time	2	4	6	ns
Slew, full drive	Rise and fall time	6	12	24	ns
Slew, partial drive	Rise and fall time	6	12	24	ns
Propagation delay ⁴ , no slew	Full drive ⁵	_	—	11	ns
Propagation delay, no slew	Partial drive ⁶	—	—	11	ns
Propagation delay, slew	Full drive	—	—	50	ns
Propagation delay, slew	Partial drive	_	—	50	ns

Table 3. Pin configuration summary

1. For this drive condition, the output voltage will not deviate more than 0.5 V from the rail reference VOH or VOL.

- 2. Leakage current applies for the full range of possible input voltage conditions.
- 3. Rise and fall time values in reference to 20% and 80%
- 4. Propagation Delay measured from/to 50% voltage point.

5. Full drive values provided are in reference to a 75 pF load.

6. Partial drive values provided are in reference to a 15 pF load.

4.3 Serial peripheral interface (SPI)

The MKW2xD SiP uses a SPI interface allowing the MCU to communicate with the radio's register set and packet buffer. The SPI is a slave-only interface; the MCU must drive R_SSEL_B, R_SCLK and R_MOSI. Write and read access to both direct and indirect registers is supported, and transfer length can be single-byte or bursts of unlimited length. Write and read access to the Packet buffer can also be single-byte or a burst mode of unlimited length.

The SPI interface is asynchronous to the rest of the IC. No relationship between R_SCLK and MKW2xD's internal oscillator is assumed. And no relationship between R_SCLK and the CLK_OUT pin is assumed. All synchronization of the SPI interface to the IC takes place inside the SPI module. SPI synchronization takes place in both directions; register writes and register reads. The SPI is capable of operation in all power modes, except Reset. Operation in hibernate mode allows most transceiver registers and the complete packet buffer to be accessed in the lowest-power operating state enabling minimal power consumption, especially during the register-initialization phase of the radio.

The SPI design features a compact, single-byte control word, reducing SPI access latency to a minimum. Most SPI access types require only a single-byte control word, with the address embedded in the control word. During control word transfer (the first byte of any SPI access), the contents of the IRQSTS1 register (MKW2xD radio's highest-priority status register) are always shifted out so that the MCU gets access to IRQSTS1, with the minimum possible latency, on every SPI access.

4.3.1 Features

- 4-wire industry standard interface, supported by all MCUs
- SPI R_SCLK maximum frequency 16 MHz (for SPI write accesses)
- SPI R_SCLK maximum frequency 9 MHz (for SPI read accesses)
- Write and read access to all radio registers (direct and indirect)
- Write and read access to packet buffer
- SPI accesses can be single-byte or burst
- Automatic address auto-incrementing for burst accesses

- The entire packet buffer can be uploaded or downloaded in a single SPI burst
- Entire packet buffer and most registers can be accessed in hibernate mode
- Built-in synchronization inside the SPI module to/from the rest of the radio

4.4 Antenna diversity

To improve the reliability of RF connectivity to long range applications, the antenna diversity feature is supported without using the MCU through use of four dedicated control pins (package pins 44, 45, 46, and 47).

Fast antenna diversity (FAD) mode supports this radio feature and, when enabled, will allow the choice of selection between two antennas during the preamble phase. By continually monitoring the received signal, the FAD block will select the first antenna of which the received signal has a correlation factor above a predefined progammable threshold. The FAD accomplishes the antenna selection by sequentially switching between the two antennas testing for the presence of suitably strong s0 symbol where the first antenna to reach this condition is then selected for the reception of the packet.

The antenna's are monitored for a period of 28 μ s each. The antenna switching is continued until 1.5 valid s0 symbols are detected. The demodulator then continues with normal preamble search before declaring "Preamble Detect".

4.5 **RF Output Power Distribution**

The following figure shows the linear region of the output and the typical power distribution of the radio as a function of PA_PWR [4:0] range. The PA_PWR [4:0] is the lower 5 bits of the PA_PWR 0x23 direct register and has a usable range of 3 to 31 decimal.

Figure 2. MKW2xD transmit power vs. PA_PWR step

5 MKW2xD operating modes

For the discussion of this topic, the primary radio and MCU operating modes are combined so that overall power consumption can then be derived. Depending on the stop requirements of the user application, a variety of stop modes are available that provide state retention, partial power down or full power down of certain logic and/or memory. I/O states are held in all modes of operation. Both the radio and MCU's power modes are described as follows.

The radio has 6 primary operating modes:

- Reset / power down
- Low power (LP) / hibernate
- Doze (low power with reference oscillator active)

- Idle
- Receive
- Transmit

Table 4 lists and describes the transceivers power modes and consumption.

 Table 4.
 Transceiver Power Modes

Mode	Definition	Current consumption ¹
Reset / powerdow n	All IC functions off, leakage only. RST asserted.	< 100 nA
Low power / hibernate	Crystal reference oscillator off. (SPI is functional.)	< 1 µA
Doze ²	Crystal reference oscillator on but CLK_OUT output available only if selected.	500 μA ³ (no CLK_OUT)
ldle	Crystal reference oscillator on with CLK_OUT output available only if selected.	700 μΑ ³ (no CLK_OUT)
Receive	Crystal reference oscillator on. Receiver on.	< 19.5 mA ⁴ 15 mA, LPPS mode
Transmit	Crystal reference oscillator on. Transmitter on.	< 18 mA ⁵

1. Conditions: VBAT and VBAT_2 = 2.7 V, nominal process @ 25°C

2. While in Doze mode, 4 MHz max frequency can be selected for CLK_OUT.

3. Typical

4. Signal sensitivity = -102 dBm

5. RF output = 0 dBm

The MCU has a variety of operating modes. For each run mode there is a corresponding wait and stop mode. Wait modes are similar to ARM sleep modes. Stop modes (VLPS, STOP) are similar to ARM sleep deep mode. The very low power run (VLPR) operating mode can drastically reduce runtime power when the maximum bus frequency is not required to handle the application needs.

The three primary modes of operation are run, wait and stop. The WFI instruction invokes both wait and stop modes for the chip. The primary modes are augmented in a number of ways to provide lower power based on application needs.

5.1 Transceiver Transmit Current Distribution

The following figure shows the relation between the transmit power generated by the radio and its current consumption.

Figure 3. MKW2xD transmit power vs transmit current (Radio Only)

6 MKW2xD electrical characteristics

6.1 Radio recommended operating conditions

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage (V _{BAT} = VDD _{INT})	V _{BAT} , VDD _{INT}	1.8	2.7	3.6	Vdc
Input Frequency	fin	2.360	—	2.480	GHz
Ambient Temperature Range	ТА	-40	25	105	°C

Table 5. Recommended operating conditions

Table continues on the next page...

Characteristic	Symbol	Min	Тур	Max	Unit
Logic Input Voltage Low	VIL	0		30% VDDINT	V
Logic Input Voltage High	VIH	70% VDDINT	_	VDDINT	V
SPI Clock Rate	f _{SPI}	_	_	16.0	MHz
RF Input Power	Pmax	_	_	10	dBm
Crystal Reference Oscillator Frequency (\pm 40 ppm over operating conditions to meet the 802.15.4 Standard.)	fref		32 MF	Iz only	

Table 5. Recommended operating conditions (continued)

6.2 Ratings

6.2.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

6.2.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

6.2.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2

Table continues on the next page ...

MCU Electrical characteristics

Symbol	Description	Min.	Max.	Unit	Notes
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

6.2.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.6	V
I _{DD}	Digital supply current	—	155	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	V _{DD} + 0.3	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB0_DP}	USB0_DP input voltage	-0.3	3.63	V
V _{USB0_DM}	USB0_DM input voltage	-0.3	3.63	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

7 MCU Electrical characteristics

7.1 Maximum ratings

Table 6. Maximum ratings

	Requirement	Description	Symbol	Rating level	Unit		
	Power Supply Voltage		VBAT, VBAT2	-0.3 to 3.6	Vdc		
	Digital Input Voltage		Vin	-0.3 to (VDDINT + 0.3)	Vdc		
	RF Input Power		Pmax	+10	dBm		
Note: Maximum ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the electrical characteristics or recommended operating conditions tables.							
	ESD ¹	Human Body Model	HBM	±2000	Vdc		
		Machine Model	MM	±200	Vdc		

Table continues on the next page...

Requirement	Description	Symbol	Rating level	Unit
	Charged Device Model	CDM	±750	Vdc
	Power Electro-		No damage / latch up to ±4000	
	Static Discharge / Direct Contact	PESD	No soft failure / reset to ±1000	Vdc
	Power Electro-	FE3D	No damage / latch up to ±6000	
EMC ²	Static Discharge / Indirect Contact		No soft failure / reset to ±1000	Vdc
	Langer IC / EFT /		No damage / latch up to ±5	Vdc
	P201	EFT (Electro	No soft failure / reset to ±5	Vúc
	Langer IC / EFT /	Magnetic Fast Transient)	No damage / latch up to ±300	Vdc
	P201	, ,	No soft failure / reset to ±150	vuc
Junction Temperature		TJ	+125	°C
Storage Temperature Range		T _{stg}	-65 to +165	°C

Table 6. Maximum ratings (continued)

1. Electrostatic discharge on all device pads meet this requirement

2. Electromagnetic compatibility for this product is low stress rating level

Note

Maximum ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the electrical characteristics or recommended operating conditions tables.

7.2 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

7.3 Nonswitching electrical specifications

7.3.1 Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.8	3.6	V	
V _{DDA}	Analog supply voltage	1.8	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.8	3.6	V	
V _{IH}	Input high voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICIO}	I/O pin DC injection current — single pin				1
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 			mA	
	 V_{IN} > V_{DD}+0.3V (Positive current injection) 	-3	—		
		—	+3		
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins	-25		mA	
	Negative current injectionPositive current injection	_	+25		

 Table 7. Voltage and current operating requirements

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit	Notes
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	
V _{RFVBAT}	V_{BAT} voltage required to retain the VBAT register file	V_{POR_VBAT}		V	

Table 7. Voltage and current operating requirements (continued)

 All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}I. The positive injection current limiting resistor is calculated as R=(V_{IN}-V_{AIO_MAX})/II_{ICAIO}I. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.

7.3.2 LVD and POR operating requirements Table 8. V_{DD} supply LVD and POR operating requirements

			-			
Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V_{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
$V_{\rm LVW4H}$	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	80	-	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V_{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range		60	-	mV	
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

1. Rising threshold is the sum of falling threshold and hysteresis voltage

Table 9.	VBAT	power	operating	requirements
----------	------	-------	-----------	--------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

7.3.3 Voltage and current operating behaviors

Table 10. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = - 9 mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3 mA	$V_{DD} - 0.5$	_	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2 mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -0.6 mA	$V_{DD} - 0.5$	_	V	
I _{OHT}	Output high current total for all ports	—	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9 mA	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 3 mA	_	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2 mA	_	0.5	V	
	• 1.71 V \leq V_{DD} \leq 2.7 V, I_{OL} = 0.6 mA	_	0.5	v	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin)				
	@ full temperature range	_	1.0	μA	1
	• @ 25 °C	_	0.1	μA	
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	—	1	μA	
I _{OZ}	Total Hi-Z (off-state) leakage current (all input pins)	—	4	μA	
R _{PU}	Internal pullup resistors	22	50	kΩ	2
R _{PD}	Internal pulldown resistors	22	50	kΩ	3

1. Tested by ganged leakage method 2. Measured at Vinput = V_{SS}

- 3. Measured at Vinput = V_{DD}

7.3.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 50 MHz
- Bus clock = 50 MHz
- Flash clock = 25 MHz
- MCG mode: FEI

Table 11. Power mode transition operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range			μs	1
	of the chip.	_	300		
	• 1.71 V/(V _{DD} slew rate) \leq 300 µs	_	1.7 V / (V _{DD}		
	 1.71 V/(V_{DD} slew rate) > 300 μs 		slew rate)		
	• VLLS1 → RUN		150	μs	
	• VLLS2 → RUN		79	μs	
	• VLLS3 → RUN		79	μs	
	• LLS → RUN		6	μs	
	• VLPS → RUN		5.2	μs	
	 STOP → RUN 		5.2	μs	

1. Normal boot (FTFL_OPT[LPBOOT]=1)

7.3.5 Power consumption operating behaviors Table 12. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 1.8 V	_	12.98	14	mA	
	• @ 3.0 V	_	12.93	13.8	mA	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					3, 4
	• @ 1.8 V		17.04	19.3	mA	
	• @ 3.0 V		17.04	13.5	ША	
	• @ 25°C	_	17.01	18.9	mA	
	• @ 125°C	_	19.8	21.3	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	_	7.95	9.5	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	5.88	7.4	mA	5
I _{DD_STOP}	Stop mode current at 3.0 V	—	320	436	μA	
	 ● -40 to 25°C ● 50°C 		360	489		
	• @ 70°C • @ 105°C		410	620		
			610	1100		
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	_	754		μA	6
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	—	1.1	_	mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V	_	437	—	μA	8
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V • @ -40 to 25°C	—	7.33	24.2	μA	
	• @ 50°C		14	32		
	• @ 70°C • @ 105°C		28	48		
			110	280		
I _{DD_LLS}	Low leakage stop mode current at 3.0 V	—	3.14	4.8	μA	
	 @ −40 to 25°C @ 50°C 		6.48	28.3		
	• @ 70°C		13.85	44.6		
	• @ 105°C		55.53	71.3		
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V		2.19	3.4	μA	
	• @ -40 to 25°C		4.35	4.35		
	• @ 50°C • @ 70°C		8.92	24.6		
	• @ 105°C		35.33	45.3		
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V • @ -40 to 25°C		1.77	3.1	μA	
	• @ 50°C		2.81	13.8		
	• @ 70°C • @ 105°C		5.20	22.3		
			19.88	34.2		
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V • @ -40 to 25°C	—	1.03	1.8	μA	

Table 12.	Power consumption	operating behavio	ors (continued)

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• @ 50°C		1.92	7.5		
	● @ 70°C ● @ 105°C		4.03	15.9		
			17.43	28.7		
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled	_	0.543	1.1	μA	
	• @ –40 to 25°C		1.36	7.58		
	• @ 50°C • @ 70°C		3.39	14.3		
	• @ 105°C		16.52	24.1		
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled	_	0.359	0.95	μA	
	 @ -40 to 25°C 		1.03	6.8		
	• @ 50°C • @ 70°C		2.87	15.4		
	• @ 105°C		15.20	25.3		
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers at 3.0 V	_	0.91	1.1	μA	9
	• @ –40 to 25°C		1.1	1.35		
	• @ 50°C • @ 70°C		1.5	1.85		
	• @ 105°C		4.3	5.7		

 Table 12. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral clocks disabled.
- 3. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation.
- 4. Max values are measured with CPU executing DSP instructions
- 5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz flash clock. MCG configured for FEI mode.
- 6. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 9. Includes 32 kHz oscillator current and RTC operation.

7.3.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

Figure 5. Run mode supply current vs. core frequency

Figure 6. VLPR mode supply current vs. core frequency

7.3.6 EMC radiated emissions operating behaviors

Table 13. EMC radiated emissions operating behaviors 1

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	19	dBµV	2, 3
V _{RE2}	Radiated emissions voltage, band 2	50–150	21	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	19	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	11	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	L	—	3, 4

1. This data was collected on a MK20DN128VLH5 64pin LQFP device.

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 3. $V_{DD} = 3.3 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ f}_{OSC} = 12 \text{ MHz} \text{ (crystal)}, \text{ f}_{SYS} = 48 \text{ MHz}, \text{ f}_{BUS} = 48 \text{ MHz}$
- 4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

7.3.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- Go to www.nxp.com.
- Perform a keyword search for "EMC design."

7.3.8 Capacitance attributes

Table 14. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

7.4 Switching specifications

7.4.1 Device clock specifications

Table 15. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	e e			
f _{SYS}	System and core clock	—	50	MHz	
	System and core clock when Full Speed USB in operation	20	-	MHz	
f _{BUS}	Bus clock	_	50	MHz	
f _{FLASH}	Flash clock	_	25	MHz	
f _{LPTMR}	LPTMR clock	_	25	MHz	
	VLPR mode ¹				
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock	_	4	MHz	

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit	Notes
f _{FLASH}	Flash clock	—	1	MHz	
f _{ERCLK}	External reference clock	—	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	25	MHz	
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz	
f _{I2S_MCLK}	I2S master clock	—	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock	—	4	MHz	

 Table 15.
 Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

7.4.2 General switching specifications

These general purpose specifications apply to all pins configured for:

- GPIO signaling
- Other peripheral module signaling not explicitly stated elsewhere

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	-	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	50	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	-	ns	3
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	13	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	7	ns	
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	-	24	ns	
	Port rise and fall time (low drive strength)				5
	Slew disabled				
		_	12	ns	
		_	6	ns	

Table 16. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	• 1.71 ≤ V _{DD} ≤ 2.7V				
	• $2.7 \le V_{DD} \le 3.6V$	—	36	ns	
	Slew enabled	—	24	ns	
	• $1.71 \le V_{DD} \le 2.7V$				
	• $2.7 \le V_{DD} \le 3.6V$				

Table 16. General switching specifications

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load

7.5 Thermal specifications

7.5.1 Thermal operating requirements

Table 17. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature ¹	-40	105	°C

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is:

 $T_J = T_A + R_{\theta JA} x$ chip power dissipation

7.5.2 Thermal attributes

Board type	Symbol	Description	80 LQFP	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	50	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient	35	°C/W	1, 3

Table continues on the next page...
Board type	Symbol	Description	80 LQFP	Unit	Notes
		(natural convection)			
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./min. air speed)	39	°C/W	1,3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./min. air speed)	29	°C/W	1,3
—	R _{θJB}	Thermal resistance, junction to board	19	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	8	°C/W	5
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	°C/W	6

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)* with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.
- 3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions Forced Convection (Moving Air) with the board horizontal.
- 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.
- 5. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

7.6 Peripheral operating requirements and behaviors

7.6.1 Core modules

7.6.1.1 JTAG electricals Table 18. JTAG limited voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1		ns
J3	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	20	—	ns
	Serial Wire Debug	10	—	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	0		ns
J7	TCLK low to boundary scan output data valid	_	25	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	1	_	ns
J11	TCLK low to TDO data valid	—	17	ns
J12	TCLK low to TDO high-Z	—	17	ns
J13	TRST assert time	100	_	ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 19. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.8	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1		ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	25	_	ns
	Serial Wire Debug	12.5	_	ns

Symbol	Description	Min.	Max.	Unit
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	—	ns
J6	Boundary scan input data hold time after TCLK rise	0	—	ns
J7	TCLK low to boundary scan output data valid	_	25	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	—	ns
J10	TMS, TDI input data hold time after TCLK rise	1.4	—	ns
J11	TCLK low to TDO data valid	_	22.1	ns
J12	TCLK low to TDO high-Z	_	22.1	ns
J13	TRST assert time	100	—	ns
J14	TRST setup time (negation) to TCLK high	8	—	ns

Table 19. JTAG full voltage range electricals (continued)

Figure 7. Test clock input timing

Figure 8. Boundary scan (JTAG) timing

Figure 9. Test Access Port timing

7.6.2 System modules

There are no specifications necessary for the device's system modules.

7.6.3 Clock modules

MCG specifications Table 20. MCG specifications 7.6.3.1

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — t nominal VDD and 25 °C		32.768	—	kHz	
f_{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$		med average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$		med average DCO output voltage and temperature — ly	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}		trimmed average DCO output Itage and temperature	—	+0.5/-0.7	± 2	%f _{dco}	1, 2
Δf_{dco_t}		trimmed average DCO output ed voltage and temperature	_	± 0.3	±1	%f _{dco}	1, 2
f _{intf_ft}		frequency (fast clock) — t nominal VDD and 25°C	_	4	—	MHz	
f _{intf_t}		frequency (fast clock) — ominal VDD and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external c RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}	_	—	kHz	
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}			kHz	
		FL	.L				
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS=01) 1280 × f _{fll ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 × f _{fll ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f_{fil} ref	80	83.89	100	MHz	
fdco_t_DMX3 2	DCO output frequency	Low range (DRS=00) 732 × f _{fll_ref}	_	23.99	—	MHz	5,6
	Mid range (DR	Mid range (DRS=01) 1464 × f _{fll_ref}	_	47.97	—	MHz	
		 Mid-high range (DRS=10) 2197 × f _{fll_ref}	_	71.99	—	MHz	
		High range (DRS=11)		95.98		MHz	1

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180	_	ps	
	 f_{DCO} = 48 M f_{DCO} = 98 M 		_	150	_		
t _{fll_acquire}	FLL target freque	ncy acquisition time	—	—	1	ms	7
		Р	ĹĹ				
f _{vco}	VCO operating fre	equency	48.0	—	100	MHz	
I _{pll}		rrent /Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} DIV multiplier = 48)	_	1200	_	μA	8
I _{pll}	PLL operating cur PLL @ 48 M = 2 MHz, V	rrent /Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} DIV multiplier = 24)	_	700	_	μA	8
f _{pll_ref}	PLL reference fre	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					9
	• f _{vco} = 48 MH	Ηz	_	120		ps	
	• f _{vco} = 100 M	1Hz	-	75	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					9
	• f _{vco} = 48 MH	Ηz	_	1350		ps	
	• f _{vco} = 100 M	1Hz	_	600	—	ps	
D _{lock}	Lock entry freque	ncy tolerance	± 1.49	_	± 2.98	%	
D _{unl}	Lock exit frequent	cy tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector det	ection time	_	_	$150 \times 10^{-6} + 1075(1/f_{pll_ref})$	S	10

Table 20.	MCG specifications	(continued)
-----------	--------------------	-------------

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

7.6.3.2 Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.8		3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	—	nA	
	• 4 MHz	_	200	—	μA	
	• 8 MHz (RANGE=01)	—	300	—	μA	
	• 16 MHz	_	950	—	μA	
	• 24 MHz	_	1.2	—	mA	
	• 32 MHz	_	1.5	—	mA	
IDDOSC	Supply current — high-gain mode (HGO=1)					1
	• 32 kHz		5	_	μA	
	• 4 MHz	—	500	_	μA	
	• 8 MHz (RANGE=01)		600	_	μA	
	• 16 MHz		2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	—	mA	
C _x	EXTAL load capacitance	_				2, 3
Cy	XTAL load capacitance		—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	—	—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	—	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_		_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	—	MΩ	
R_S	Series resistor — low-frequency, low-power mode (HGO=0)	_		—	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	—	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	_	—	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
			0		kΩ	

7.6.3.2.1 Oscillator DC electrical specifications Table 21. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

Table 21. Oscillator DC electrical specifications (continued)

1. V_{DD} =3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3. C_x and C_y can be provided by using either integrated capacitors or external components.

4. When low-power mode is selected, R_F is integrated and must not be attached externally.

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

7.6.3.2.2 Oscillator frequency specifications Table 22. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	—	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

7.6.3.3 32 kHz oscillator electrical characteristics

7.6.3.3.1 32 kHz oscillator DC electrical specifications Table 23. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.8	—	3.6	V
R _F	Internal feedback resistor	—	100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	—	0.6	_	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

7.6.3.3.2 32 kHz oscillator frequency specifications Table 24. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	—	kHz	
t _{start}	Crystal start-up time	_	1000	_	ms	1
V _{ec_extal32}	Externally provided input clock amplitude	700		V _{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

3. The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT} .

7.6.4 Memories and memory interfaces

7.6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

7.6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	I Description		Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	—
t _{hversscr}	t _{hversscr} Sector Erase high-voltage time		13	113	ms	1
t _{hversblk256k}	Erase Block high-voltage time for 256 KB	_	104	904	ms	1

Table 25. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

7.6.4.1.2 Flash timing specifications — commands Table 26. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					1
t _{rd1blk64k}	64 KB data flash	_	_	0.9	ms	
t _{rd1blk256k}	• 256 KB program flash	-	-	1.7	ms	
t _{rd1sec2k}	Read 1s Section execution time (flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	—	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	_
	Erase Flash Block execution time					2
t _{ersblk64k}	• 64 KB data flash	-	58	580	ms	
t _{ersblk256k}	• 256 KB program flash	_	122	985	ms	
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
	Program Section execution time					_
t _{pgmsec512}	 512 bytes flash 	-	2.4	_	ms	
t _{pgmsec1k}	• 1 KB flash	_	4.7	_	ms	
t _{pgmsec2k}	• 2 KB flash	_	9.3	_	ms	
t _{rd1all}	Read 1s All Blocks execution time	—	—	1.8	ms	1
t _{rdonce}	Read Once execution time	—	—	25	μs	1

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{pgmonce}	Program Once execution time	—	65	_	μs	—
t _{ersall}	Erase All Blocks execution time	—	250	2000	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	_	30	μs	1
	Swap Control execution time					—
t _{swapx01}	control code 0x01	—	200	—	μs	
t _{swapx02}	control code 0x02	—	70	150	μs	
t _{swapx04}	control code 0x04	—	70	150	μs	
t _{swapx08}	control code 0x08	—	_	30	μs	
	Program Partition for EEPROM execution time					_
t _{pgmpart64k}	• 64 KB FlexNVM	—	138	_	ms	
	Set FlexRAM Function execution time:					
t _{setramff}	Control Code 0xFF	—	70	—	μs	
t _{setram32k}	32 KB EEPROM backup	—	0.8	1.2	ms	
t _{setram64k}	64 KB EEPROM backup	_	1.3	1.9	ms	
	Byte-write to FlexRAM	for EEPRON	l operation			
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	—	175	260	μs	3
	Byte-write to FlexRAM execution time:					—
t _{eewr8b32k}	32 KB EEPROM backup	—	385	1800	μs	
t _{eewr8b64k}	64 KB EEPROM backup		475	2000	μs	
	Word-write to FlexRAM	for EEPRON	A operation	1	1	1
t _{eewr16bers}	Word-write to erased FlexRAM location execution time	—	175	260	μs	
	Word-write to FlexRAM execution time:					_
t _{eewr16b32k}	32 KB EEPROM backup	—	385	1800	μs	
t _{eewr16b64k}	64 KB EEPROM backup	—	475	2000	μs	
	Longword-write to FlexRA	M for EEPR	OM operatio	n	I	1
t _{eewr32bers}	Longword-write to erased FlexRAM location execution time	—	360	540	μs	
	Longword-write to FlexRAM execution time:					_
t _{eewr32b32k}	32 KB EEPROM backup	—	630	2050	μs	
	64 KB EEPROM backup		810	2250		

Table 26. Flash command timing specifications (continued)

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	-	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

7.6.4.1.3 Flash high voltage current behaviors Table 27. Flash high voltage current behaviors

7.6.4.1.4 Reliability specifications Table 28. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Program	n Flash			-	
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	_
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2
	Data	Flash				
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	_	years	_
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	—	years	_
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2
	FlexRAM a	s EEPROM		-		
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	—	years	—
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	_
	Write endurance					3
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	35 K	175 K	—	writes	
n _{nvmwree128}	EEPROM backup to FlexRAM ratio = 128	315 K	1.6 M	_	writes	
n _{nvmwree512}	EEPROM backup to FlexRAM ratio = 512	1.27 M	6.4 M	_	writes	
n _{nvmwree4k}	 EEPROM backup to FlexRAM ratio = 4096 	10 M	50 M		writes	

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_j \leq °C.

3. Write endurance represents the number of writes to each FlexRAM location at -40 °C ≤Tj ≤ °C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

Num	Description	Min.	Max.	Unit
	Operating voltage	1.8	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	_	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	_	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	_	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	_	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	_	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid	_		ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state	_	12	ns

7.6.4.2 EzPort switching specifications Table 29. EzPort switching specifications

Figure 11. EzPort Timing Diagram

7.6.5 Security and integrity modules

7.6.5.1 Drylce Tamper Electrical Specifications

Information about security-related modules is not included in this document and is available only after a nondisclosure agreement (NDA) has been signed. To request an NDA, contact your local NXP sales representative.

7.6.6 Analog

7.6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 1 and Table 31 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.8	—	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V_{DD} ($V_{DD} - V_{DDA}$)	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high	Absolute	V _{DDA}	V _{DDA}	V _{DDA}	V	3
V _{REFL}	ADC reference voltage low	Absolute	V _{SSA}	V _{SSA}	V _{SSA}	V	4
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 * VREFH	V	
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input	16-bit mode	—	8	10	pF	
	capacitance	 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	
R _{AS}	Analog source	13-bit / 12-bit modes					5
	resistance (external)	f _{ADCK} < 4 MHz	—	_	5	kΩ	
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	6

7.6.6.1.1 16-bit ADC operating conditions Table 30. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	—	12.0	MHz	6
C _{rate}	ADC conversion rate	≤ 13-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000		818.330	Ksps	7
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	Ksps	7

Table 30. 16-bit ADC operating conditions (continued)

- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. V_{REFH} is internally tied to V_{DDA} .
- 4. V_{REFL} is internally tied to V_{SSA}.
- 5. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 6. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 7. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

7.6.6.1.2 16-bit ADC electrical characteristics

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	imes			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	—	±1.4	±2.1		
DNL	Differential non-	12-bit modes		±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity	<12-bit modes	—	±0.2	-0.3 to 0.5		
INL	Integral non-linearity	12-bit modes		±1.0	-2.7 to +1.9	LSB ⁴	5
		<12-bit modes	—	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}$
		 <12-bit modes 	—	-1.4	-1.8		
EQ	Quantization error	16-bit modes	—	-1 to 0	—	LSB ⁴	
		 ≤13-bit modes 	—	-	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	_	bits	
		• Avg = 4	11.4	13.1			
						bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 ×	ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	_	-94	_		
		16-bit single-ended mode		-85		dB	

Table 31. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		• Avg = 32					
SFDR	Spurious free dynamic range	16-bit differential modeAvg = 32	82	95	_	dB	7
					—	dB	
		16-bit single-ended mode	78	90			
		• Avg = 32					
EIL	Input leakage error			$I_{ln} \times R_{AS}$	mV	I _{In} = leakage current	
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 31. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$ 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.
- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$

5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)

- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Typical ADC 16-bit Differential ENOB vs ADC Clock

7.6.6.2 CMP and 6-bit DAC electrical specifications Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage	1.8	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	—	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	 CR0[HYSTCTR] = 01 	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5			V
V _{CMPOI}	Output low	—	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_		40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

 Table 32.
 Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Figure 16. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

7.6.7 Timers

See General switching specifications.

7.6.8 Communication interfaces

7.6.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.

NOTE

7.6.8.2 USB DCD electrical specifications Table 33. USB0 DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DP_SRC}	USB_DP source voltage (up to 250 µA)	0.5	—	0.7	V
V _{LGC}	Threshold voltage for logic high	0.8	—	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μA
I _{DM_SINK}	USB_DM sink current	50	100	150	μA
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	—	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

7.6.8.3 VREG electrical specifications Table 34. VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	—	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	—	125	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	—	1.27	30	μA	
I _{DDoff}	Quiescent current — Shutdown mode VREGIN = 5.0 V and temperature=25 °C Across operating voltage and temperature 		650 —	4	nA μA	
I _{LOADrun}	Maximum load current — Run mode			120	mA	
I _{LOADstby}	Maximum load current — Standby mode		_	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	v	
	Standby mode	2.1	2.8	3.6	V	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	_	3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1	—	100	mΩ	
I _{LIM}	Short circuit current	—	290	—	mA	

1. Typical values assume VREGIN = 5.0 V, Temp = 25 $^{\circ}$ C unless otherwise stated.

2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.

7.6.8.4 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

		0 (•	• •	
Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

Table 35. Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 17. DSPI classic SPI timing — master mode

Table 36. Slave mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz

Num	Description	Min.	Max.	Unit
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	—	14	ns

Table 36. Slave mode DSPI timing (limited voltage range) (continued)

Figure 18. DSPI classic SPI timing — slave mode

7.6.8.5 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.8	3.6	V	1
	Frequency of operation	—	12.5	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	

 Table 37. Master mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit	Notes
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	—	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	—	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

 Table 37.
 Master mode DSPI timing (full voltage range) (continued)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 19. DSPI classic SPI timing — master mode

Table 38. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.8	3.6	V
	Frequency of operation	—	6.25	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	20	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	19	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	19	ns

Figure 20. DSPI classic SPI timing — slave mode

7.6.8.6 I²C

See General switching specifications.

7.6.8.7 UART

See General switching specifications.

7.6.8.8 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Due to a limited set of pin availability in the SiP, the I2S/SAI block is usable only for receive mode and must be configured as a slave.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.8	3.6	V
S1	I2S_MCLK cycle time	40	—	ns
S2	I2S_MCLK (as an input) pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	-	15	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	—	ns

Table 39. I2S/SAI master mode timing

Num.	Characteristic	Min.	Max.	Unit
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	25		ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Table 39. I2S/SAI master mode timing (continued)

Figure 21. I2S/SAI timing — master modes

Table 40.	I2S/SAI	slave	mode	timing
-----------	---------	-------	------	--------

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.8	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	10	-	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	-	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	29	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	-	ns
S17	I2S_RXD setup before I2S_RX_BCLK	10	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	21	ns

MCU Electrical characteristics

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 22. I2S/SAI timing — slave modes

7.6.8.9 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Due to a limited set of pin availability in the SiP, the I2S/SAI block is usable only for receive mode and must be configured as a slave.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.8	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	—	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	-	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	75	-	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Table 41. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Figure 23. I2S/SAI timing — master modes

Table 42. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.8	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	—	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	87	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Transceiver Electrical Characteristics

Figure 24. I2S/SAI timing — slave modes

8 Transceiver Electrical Characteristics

8.1 DC electrical characteristics

Table 43. DC electrical characteristics (V_{BAT}, V_{BAT2} = 2.7 V, T_A=25 °C, unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Current (VBAT + VBAT2)					
Reset / power down ¹	I _{leakage}	_	<60	<100	nA
Hibernate ¹	Іссн	_	<1	—	μA
Doze (No CLK_OUT)	I _{CCD}	_	500	—	μA
Idle (No CLK_OUT)	I _{CCI}	_	700	—	μA
Transmit mode (0 dBm nominal output power)	I _{сст}	_	17	18	mA
Receive mode (normal)	I _{CCR}	_	19	19.5	mA
Receive mode (power preamble search)			15 (LPPS)		
Input current (VIN = 0 V or VDDINT) (All digital inputs)	I _{IN}	_	_	±1	μA
Input low voltage (all digital inputs)	V _{IL}	0	—	30% V _{DDINT}	V
Input high voltage (all digital inputs)	V _{IH}	70% V _{DDINT}	—	V _{DDINT}	V
Output high voltage (IOH = -1 mA) (all digital outputs)	V _{OH}	80% V _{DDINT}	—	V _{DDINT}	V
Output low voltage (IOL = 1 mA) (all digital outputs)	V _{OL}	0	—	20% V _{DDINT}	V

1. To attain specified low power current, all GPIO and other digital IO must be handled properly.

8.2 AC electrical characteristics

Table 44. Receiver AC electrical characteristics (V_{BAT} , V_{DDINT} = 2.7 V, T_A =25 °C, f_{ref} = 32 MHz unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Sensitivity for 1% packet error rate (PER) (-40 to +105 °C)	SENSper	_	-99	-97	dBm
Sensitivity for 1% packet error rate (PER) (+25 °C)	SENSper	_	-102		dBm
Saturation (maximum input level)	SENSmax	-10	—	—	dBm
Channel rejection for dual port mode (1% PER and desired signal –82 dBm)					
+5 MHz (adjacent channel)		—	39	_	dB
–5 MHz (adjacent channel)		—	33	_	dB
+10 MHz (alternate channel)		—	50	_	dB
–10 MHz (alternate channel)		—	50	_	dB
>= 15 MHz		—	58	_	dB
Frequency error tolerance		_	—	200	kHz
Symbol rate error tolerance		80	—	—	ppm

Table 45. Transmitter AC electrical characteristics (V_{BAT} , V_{DDINT} = 2.7 V, T_A =25 °C, f_{ref} = 32 MHz unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Power spectral density ¹ , absolute limit from –40°C to +105°C		-30	—	_	dBm
Power Spectral Density ² , Relative limit from –40°C to +105°C		-20	—	_	dB
Nominal output power ³	Pout	-2	0	2	dBm
Maximum output power ³		_	8	_	dBm
Error vector magnitude	EVM	—	8	13	%
Output power control range ⁴		—	40	_	dB
Over the air data rate		—	250	_	kbps
2nd harmonic ⁵		—	<-50	<-40	dBm
3rd harmonic ⁵		—	<-50	<-40	dBm

1. [f-fc] > 3.5 MHz, average spectral power is measured in 100 kHz resolution BW.

- 2. For the relative limit, the reference level is the highest reference power measured within ±1 MHz of the carrier frequency.
- 3. Measurement is at the package pin.
- Measurement is at the package pin on the output of the Tx/Rx switch. It does not degrade more than ±2 dB across temperature and an additional ±1 dB across all processes. Power adjustment will span nominally from -35 dBm to +8 dBm in 21 steps @ 2 dBm / step.
- 5. Measured with output power set to nominal (0 dBm) and temperature @ 25°C. Trap filter is needed.

Characteristic	Symbol	Тур	Unit
RFIN Pins for internal T/R switch configuration, TX mode	Zin	14.7 - j215	Ohm
2.360 GHz		13.7 -	
2.420 GHz		j18.7	
2.480 GHz		13 - j16.3	
RFIN Pins for internal or external T/R switch configuration, RX mode	Zin	14 - j9.5	Ohm
2.360 GHz		13 - j7.6	
2.420 GHz		12.3 - j5.6	
2.480 GHz		jore	

Table 46.	RF	port	impedance
		poit	mpodanoo

8.3 SPI timing: R_SSEL_B to R_SCLK

The following diagram describes timing constraints that must be guaranteed by the system designer.

t_{CSC} (CS-to-SCK delay): 31.25 ns

t_{ASC} (After SCK delay): 31.25 ns

t_{DT} (Minimum CS idle time): 62.5 ns

t_{CKH} (Minimum R_SCLK high time): 31.25 ns (for SPI writes); 55.55 ns (for SPI reads)

t_{CKL} (Minimum R_SCLK low time): 31.25 ns (for SPI writes); 55.55 ns (for SPI reads)

Note

The SPI master device deasserts R_SSEL_B only on byte boundaries, and only after guaranteeing the t_{ASC} constraint shown above.

8.4 SPI timing: R_SCLK to R_MOSI and R_MISO

The following diagram describes timing constraints that must be guaranteed by the system designer. These constraints apply to the Master SPI (R_MOSI), and are guaranteed by the radio SPI (R_MISO).

Figure 26. SPI timing: R_SCLK to R_MOSI and R_MISO

t_{DSU} (data-to-SCK setup): 10 ns

t_{DH} (SCK-to-data hold): 10 ns

9 Crystal oscillator reference frequency

This section provides application specific information regarding crystal oscillator reference design and recommended crystal usage.

9.1 Crystal oscillator design considerations

The IEEE ® 802.15.4 Standard requires that frequency tolerance be kept within ±40 ppm accuracy. This means that a total offset up to 80 ppm between transmitter and receiver will still result in acceptable performance. The MKW2xD transceiver provides on board crystal trim capacitors to assist in meeting this performance, while the bulk of the crystal load capacitance is external.

9.2 Crystal requirements

The suggested crystal specification for the MKW2xD is shown in Table 47. A number of the stated parameters are related to desired package, desired temperature range and use of crystal capacitive load trimming.

Parameter	Value	Unit	Condition
Frequency	32	MHz	
Frequency tolerance (cut tolerance)	±10	ppm	at 25°C
Frequency stability (temperature)	±25	ppm	Over desired temperature range
Aging ¹	±2	ppm	max
Equivalent series resistance	60	Ω	max
Load capacitance	5–9	pF	
Shunt capacitance	<2	pF	max
Mode of oscillation			fundamental

Table 47. MKW2xD crystal specifications

1. A wider aging tolerance may be acceptable if application uses trimming at production final test.

10 Pin diagrams and pin assignments

10.1 MKW21D256/MKW21D512 Pin Assignment

10.3 Pin assignments

Note

SPI1 (ALT2): SPI1 is dedicated to the radio and is not an alternate MCU peripheral.

Table 48. Pin Assignments

MKW 22/24 D512 (USB)	MKW 21D25 6/512	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EZPO RT
1	1	EXTAL _32M	EXTAL_32M									
2	2	GPIO1	GPIO1									
3	3	GPIO2	GPIO2									

MKW 22/24 D512 (USB)	MKW 21D25 6/512	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EZPO RT
4	4	PTC4/ LLWU_ P8	Disabled		PTC4/ LLWU_ P8	SPI0_ PCS0	UART1 _TX	FTM0_ CH3		CMP1_ OUT		
5	5	PTC5/ LLWU_ P9	Disabled		PTC5/ LLWU_ P9	SPI0_ SCK	LPTM R0_AL T2	I2S0_R XD0		CMP0_ OUT		
6	6	PTC6/ LLWU_ P10	CMP0_IN0	CMP0_ IN0	PTC6/ LLWU_ P10	SPI0_ SOUT	PDB0_ EXTR G	I2S0_R X_BCL K		I2S0_ MCLK		
7	7	PTC7	CMP0_IN1	CMP0_ IN1	PTC7	SPI0_ SIN	USB_S OF_O UT	I2S0_R X_FS				
8	8	PTD1	ADC0_SE5b	ADC0_ SE5b	PTD1	SPI0_ SCK	UART2 _CTS_ b					
9	9	PTD2/ LLWU_ P13	Disabled		PTD2/ LLWU_ P13	SPI0_ SOUT	UART2 _RX	I2C0_S CL				
10	10	PTD3	Disabled		PTD3	SPI0_ SIN	UART2 _TX	I2C0_S DA				
11	11	PTD4/ LLWU_ P14	ADC0_SE21	ADC0_ SE21	PTD4/ LLWU_ P14	SPI0_ PCS1	UART0 _RTS_ b	FTM0_ CH4		EWM_I N		
12	12	PTD5	ADC0_SE6b	ADC0_ SE6b	PTD5	SPI0_ PCS2	UART0 _CTS_ b/ UART0 _COL_ b	FTM0_ CH5		EWM_ OUT_b		
13	13	PTD6/ LLWU_ P15	ADC0_SE7b	ADC0_ SE7b	PTD6/ LLWU_ P15	SPI0_ PCS3	UART0 _RX	FTM0_ CH6		FTM0_ FLT0		
14	14	PTD7	ADC0_SE22	ADC0_ SE22	PTD7	CMT_I RO	UART0 _TX	FTM0_ CH7		FTM0_ FLT1		
15	15	PTE0	ADC0_SE10	ADC0_ SE10	PTE0	SPI1_ PCS1	UART1 _TX		TRAC E_CLK OUT	I2C1_S DA	RTC_C LKOUT	
16	16	PTE1/ LLWU_ P0	DC0_SE11	ADC0_ SE11	PTE1/ LLWU_ P0	SPI1_ SOUT	UART1 _RX		TRAC E_D3	I2C1_S CL	SPI1_ SIN	
17	17	PTE2/ LLWU_ P1	ADC0_DP1	ADC0_ DP1	PTE2/ LLWU_ P1	SPI1_ SCK	UART1 _CTS_ b		TRAC E_D2			

Table 48. Pin Assignments (continued)

MKW 22/24 D512 (USB)	MKW 21D25 6/512	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EZPO RT
18	18	PTE3	ADC0_DM1	ADC0_ DM1	PTE3	SPI1_ SIN	UART1 _RTS_ b		TRAC E_D1		SPI1_ SOUT	
19	19	PTE4/ LLWU_ P2	Disabled		PTE4/ LLWU_ P2	SPI1_ PCS0			TRAC E_D0			
20	20	VDD_M CU	VDD									
	21	PTE16	ADC0_SE4a	ADC0_ SE4a	PTE16	SPI0_ PCS0	UART2 _TX	FTM_C LKIN0		FTM0_ FLT3		
	22	PTE17	ADC0_SE5a	ADC0_ SE5a	PTE17	SPI0_ SCK	UART2 _RX	FTM_C LKIN1		LPTM R0_AL T3		
	23	PTE18	ADC0_SE6a	ADC0_ SE6a	PTE18	SPI0_ SOUT	UART2 _CTS_ b	I2C0_S DA				
	24	PTE19	ADC0_SE7a	ADC0_ SE7a	PTE19	SPI0_ SIN	UART2 _RTS_ b	I2C0_S CL				
21		USB0_ DP	USB0_DP	USB0_ DP								
22		USB0_ DM	USB0_DM	USB0_ DM								
23		VOUT3 3	VOUT33	VOUT3 3								
24		VREGI N	VREGIN	VREGI N								
25	25	VDDA	VDDA	VDDA								
26	26	VREFH	VREFH	VREF H								
27	27	VREFL	VREFL	VREFL								
28	28	VSSA	VSSA	VSSA								
29	29	TAMPE R0/ RTC_ WAKE UP_B	TAMPER0/ RTC_WAKEUP_B	TAMP ER0/ RTC_ WAKE UP_B								
30	30	XTAL3 2	XTAL32	XTAL3 2								
31	31	EXTAL 32	EXTAL32	EXTAL 32								
32	32	VBAT_ MCU	VBAT_MCU	VBAT_ MCU								

Table 48. Pin Assignments (continued)

MKW 22/24 D512 (USB)	MKW 21D25 6/512	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EZPO RT
33	33	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK		PTA0	UART0 _CTS_ b/ UART0 _COL_ b	FTM0_ CH5				JTAG_ TCLK/ SWD_ CLK	EZP_C LK
34	34	PTA1	JTAG_TDI/ EZP_DI		PTA1	UART0 _RX	FTM0_ CH6				JTAG_ TDI	EZP_D I
35	35	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO		PTA2	UART0 _TX	FTM0_ CH7				JTAG_ TDO/ TRAC E_SW O	EZP_D O
36	36	PTA3	JTAG_TMS/ SWD_DIO		PTA3	UART0 _RTS_ b	FTM0_ CH0				JTAG_ TMS/ SWD_ DIO	
37	37	PTA4/ LLWU_ P3	NMI_b/EZP_CS_b		PTA4/ LLWU_ P3		FTM0_ CH1				NMI_b	EZP_C S_b
38	38	VDD2_ MCU	VDD	VDD								
39	39	PTA18	EXTAL0	EXTAL 0	PTA18		FTM0_ FLT2	FTM_C LKIN0				
40	40	PTA19	XTAL0	XTAL0	PTA19		FTM1_ FLT0	FTM_C LKIN1		LPTM R0_AL T1		
41	41	RESET _b	RESET_b	RESET _b								
42	42	VBAT2 _RF	VBAT2_RF									
43 ¹	43 ¹	VDD_R EGD	VDD_REGD									
44	44	ANT_A	ANT_A									
45	45	ANT_B	ANT_B									
46	46	RX_S WITCH	RX_SWITCH									
47	47	TX_SW ITCH	TX_SWITCH									
48	48	GND_P A	VSSA_PA									
49	49	RF_OU TP	RF_OUTP									

Table 48.	Pin Assignments	(continued)
-----------	-----------------	-------------

MKW 22/24 D512 (USB)	MKW 21D25 6/512	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EZPO RT
50	50	RF_OU TN	RF_OUTN									
51	51	GND_P A	VSSA_PA									
52 ¹	52 ¹	VDD_P A	VDD_PA									
53 ¹	53 ¹	VDD_I F	VDD_IF									
54 ¹	54 ¹	VDD_R F	VDD_RF									
55	55	VBAT_ RF	VBAT									
56	56	XTAL_ 32M	XTAL_32M									
57	57	Factory test	Do not connect									
58	58	Factory test	Do not connect									
59	59	Factory test	Do not connect									
60	60	Factory test	Do not connect									
61	61	Factory test	Do not connect									
62	62	Factory test	Do not connect									
63	63	GND_P A	Connect to ground									

Table 48. Pin Assignments (continued)

1. This pin is used for external bypassing of an internal regulator. DO NOT connect to power.

11 Dimensions

11.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number		
63 MAPLGA	98ASA00393D		

12 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
2	05/2016	 Updated features list and added pin package diagram on front page. Added Related Resources table. Updated structure of section 4 and added section 4.5 "RF Output Power Distribution". Added section 5.1 "Transceiver Transmit Current Distribution". Updated pin diagrams with correct pin assignments. Replaced MKW2x with MKW2xD through out.

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2013 - 2016 NXP B.V.

Document Number MKW2xDxxx Revision 2, 05/2016

