
SmartMesh WirelessHART User's Guide Page of 1 135

SmartMesh WirelessHART

User's Guide

SmartMesh WirelessHART User's Guide Page of 2 135

Table of Contents

1 About This Guide ___ 5

1.1 Related Documents __ 5

1.2 Conventions Used ___ 7

1.3 Revision History ___ 8

2 SmartMesh Glossary __ 9

3 The SmartMesh WirelessHART Network __ 13

3.1 Introduction ___ 13

3.1.1 Network Overview __ 13

3.1.2 SmartMesh Network Features ___ 15

3.2 Network Formation __ 16

3.2.1 Mote Joining __ 17

3.2.2 Discovery ___ 17

3.3 Bandwidth and Latency __ 18

3.3.1 Base Bandwidth __ 18

3.3.2 Services __ 19

3.3.3 Cascading Links __ 19

3.3.4 Downstream Bandwidth __ 19

3.3.5 Fast Services on the Pipe ___ 19

3.4 Data Traffic __ 20

3.5 Security __ 21

3.5.1 Security Layers __ 21

3.5.2 Security Modes __ 22

4 The SmartMesh WirelessHART Manager __ 23

4.1 Introduction ___ 23

4.1.1 Embeddable Manager ___ 23

4.1.2 Packaged Manager __ 23

4.2 Manager Interfaces __ 25

4.2.1 Wired Interfaces __ 25

4.2.2 Software Interfaces ___ 26

4.3 Connecting to the Manager ___ 28

4.3.1 Connecting the Manager Directly to a Windows Computer _____________________________________ 28

4.3.2 Connecting to the Manager on the LAN __ 29

4.3.3 Accessing Admin Toolset ___ 32

4.3.4 Configuring the Firewall __ 32

4.3.5 Changing the CLI Password ___ 33

4.4 Administering the Manager ___ 34

4.4.1 Root Access ___ 34

4.4.2 Network ID __ 34

4.4.3 Network Time __ 35

SmartMesh WirelessHART User's Guide Page of 3 135

4.4.4 Software Licensing ___ 36

4.5 Network Activity __ 36

4.5.1 Network Structure and Formation __ 36

4.5.2 Communicating with Motes ___ 37

4.5.3 Network Health __ 37

4.5.4 Health Reports ___ 37

4.5.5 Optimization ___ 37

4.6 Network Bandwidth Control ___ 39

4.7 Access Control ___ 41

4.7.1 Network Security ___ 41

4.7.2 Limiting the Maximum Number of Motes __ 44

4.8 Over-the-Air-Programming __ 44

4.8.1 Background ___ 44

4.8.2 OTAP through a Serial Port ___ 45

4.8.3 OTAP Using Admin Toolset ___ 45

4.8.4 OTAP via Manager API ___ 46

4.8.5 Troubleshooting an Unsuccessful OTAP ___ 46

4.9 Restoring Manager Factory Default Settings __ 46

4.10 Channel Blacklisting ___ 48

4.11 INI Files __ 49

4.11.1 system.ini __ 49

4.11.2 platform.ini ___ 49

4.11.3 dcc.ini ___ 49

4.11.4 Modifying ini variables ___ 49

4.11.5 Default dcc.ini ___ 50

4.11.6 Default platform.ini ___ 60

4.11.7 Default system.ini __ 61

4.12 Datalog Utility __ 63

4.12.1 Overview ___ 64

4.12.2 Using Datalog ___ 64

4.12.3 Datalog Output ___ 67

4.12.4 How to Restart Datalog on System Reboot ___ 69

4.13 Configuring PPP on Serial 1 ___ 71

4.13.1 Switching Serial Port Modes __ 71

4.13.2 PPP Configuration __ 72

4.13.3 Linux Client Configuration __ 72

4.13.4 Windows Client Configuration ___ 73

4.13.5 Assembling a 9-pin D-SUB Adapter for Serial 1 __ 85

4.14 Manager Redundancy __ 86

4.14.1 Overview ___ 86

4.14.2 Configuration __ 87

4.14.3 Advanced configuration __ 87

4.14.4 Firewall configuration __ 88

SmartMesh WirelessHART User's Guide Page of 4 135

5 The SmartMesh WirelessHART Mote __ 89

5.1 Introduction ___ 89

5.1.1 Steps in a Mote Design __ 89

5.2 Mote State Machine ___ 90

5.3 Joining ___ 92

5.3.1 OEM Microprocessor Boot __ 94

5.3.2 Mote Boot __ 94

5.3.3 Pre-join Configuration ___ 94

5.3.4 Network Joining __ 95

5.4 Services __ 96

5.4.1 Service Characteristics and Timing Parameters __ 96

5.4.2 Service Types __ 97

5.4.3 Non-Service Bandwidth Control __ 97

5.4.4 Using the Services API ___ 97

5.4.5 Maintenance __ 102

5.4.6 Publish __ 103

5.4.7 Block Transfer __ 108

5.4.8 Events __ 111

5.5 Communication ___ 112

5.5.1 Best-Effort Communication __ 113

5.5.2 Reliable Communication __ 113

5.6 Events and Alarms ___ 114

5.7 Timestamps __ 114

5.8 WirelessHART-Compliant Applications __ 114

5.8.1 Command Termination ___ 114

5.8.2 Key WirelessHART Command Support ___ 123

5.8.3 Efficiently Checking for Manager-Originated Services __ 129

5.9 Factory Default Settings ___ 130

5.10 Master vs. Slave ___ 131

5.10.1 Modes __ 131

5.10.2 LEDs ___ 131

5.10.3 Master Behavior ___ 131

5.10.4 Switching To Slave Mode __ 133

5.10.5 Switching To Master Mode __ 133

SmartMesh WirelessHART User's Guide Page of 5 135

1 About This Guide

1.1 Related Documents

The following documents are available for the network:SmartMesh WirelessHART

Getting Started with a Starter Kit

 - walks you through basic installation and a few tests to make sure yourSmartMesh WirelessHART Easy Start Guide

network is working

 - the Installation section contains instructions for the installing the serialSmartMesh WirelessHART Tools Guide

drivers and example programs used in the Easy Start Guide and other tutorials.

User Guide

 - describes network concepts, and discusses how to drive mote and managerSmartMesh WirelessHART User's Guide

APIs to perform specific tasks, e.g. to send data or collect statistics. This document provides context for the API

guides.

Interfaces for Interaction with a Device

 - used for human interaction with a Manager (e.g. during developmentSmartMesh WirelessHART Manager CLI Guide

of a client, or for troubleshooting). This document covers connecting to the CLI and its command set.

 - used for programmatic interaction with a manager. This documentSmartMesh WirelessHART Manager API Guide

covers connecting to the API and its command set.

 - used for human interaction with a mote (e.g. during development of aSmartMesh WirelessHART Mote CLI Guide

sensor applicaition, or for troubleshooting). This document covers connecting to the CLI and its command set.

 - used for programmatic interaction with a mote. This document coversSmartMesh WirelessHART Mote API Guide

connecting to the API and its command set.

Software Development Tools

 - describes the various evaluation and development support tools included inSmartMesh WirelessHART Tools Guide

the including tools for exercising mote and manager APIs and visualizing the network.SmartMesh SDK

Application Notes

 - app notes covering a wide range of topics specific to SmartMesh WirelessHART Application Notes SmartMesh

networks and topics that apply to SmartMesh networks in general.WirelessHART

Documents Useful When Starting a New Design

http://www.linear.com/demo/DC9007A
http://www.linear.com/docs/41864
http://www.linear.com/docs/42454
http://ltspice.linear.com/dust/SmartMesh%20WirelessHART%20Tools%20Guide.pdf
http://www.linear.com/docs/41887
http://www.linear.com/docs/41889
http://www.linear.com/docs/41890
http://www.linear.com/docs/41892
http://www.linear.com/docs/41893
http://www.linear.com/docs/42454
http://ltspice.linear.com/dust/SmartMesh%20WirelessHART%20Tools%20Guide.pdf
http://www.linear.com/designtools/software/#Dust
http://www.linear.com/docs/43190

SmartMesh WirelessHART User's Guide Page of 6 135

The Datasheet for the , or one of the based on it, or the backwards compatibleLTC5800-WHM SoC castellated modules

.LTP5900 22-pin module

The Datasheet for the embedded manager.LTP5903-WHR

A for the mote SoC or , or the - this discusses bestHardware Integration Guide castellated module 22-pin module

practices for integrating the SoC or module into your design.

A for the embedded manager - this discusses best practices for integrating the embeddedHardware Integration Guide

manager into your design.

A - For SoC motes and Managers. Discusses how to set default IO configuration andBoard Specific Integration Guide

crystal calibration information via a "fuse table".

 - contains an SoC design checklist, antenna selection guide, etc.Hardware Integration Application Notes

The - a guide to the Programmer Board and ESP software used to program firmwareESP Programmer Guide DC9010

on a device.

ESP software - used to program firmware images onto a mote or module.

Fuse Table software - used to construct the fuse table as discussed in the Board Specific Integration Guide.

Other Useful Documents

A glossary of wireless networking terms used in SmartMesh documentation can be found in the SmartMesh

.WirelessHART User's Guide

A list of Frequently Asked Questions

http://www.linear.com/docs/41866
http://www.linear.com/docs/41867
http://www.linear.com/docs/41868
http://www.linear.com/docs/41869
http://www.linear.com/docs/41874
http://www.linear.com/docs/41877
http://www.linear.com/docs/41879
http://www.linear.com/docs/41878
http://www.linear.com/docs/41875
http://www.linear.com/docs/43188
http://www.linear.com/docs/41876
http://www.linear.com/docs/41887
http://www.linear.com/docs/41887
http://www.linear.com/docs/43187

SmartMesh WirelessHART User's Guide Page of 7 135

1.2 Conventions Used

The following conventions are used in this document:

 indicates information that you enter, such as specifying a URL.Computer type

 indicates buttons, fields, menu commands, and device states and modes.Bold type

 is used to introduce a new term, and to refer to APIs and their parameters.Italic type

Tips provide useful information about the product.

Informational text provides additional information for background and context

Notes provide more detailed information about concepts.

Warning! Warnings advise you about actions that may cause loss of data, physical harm to the hardware or your

person.

code blocks display examples of code

SmartMesh WirelessHART User's Guide Page of 8 135

1.3 Revision History

Revision Date Description

1 07/17/2012 Initial release

2 03/18/2013 Numerous small changes

3 10/22/2013 Added description of Linux HA hooks, other minor corrections

4 04/04/2014 Added details on the temperature data generator for master mode;

5 10/28/2014 Detailed compliance for EN 300 328 rev. 1.8.2; Updated description of OTAP; Other minor changes

6 04/22/2015 Updated blacklisting requirements; Added disconnected state; Other minor changes

7 12/03/2015 Minor changes

SmartMesh WirelessHART User's Guide Page of 9 135

2 SmartMesh Glossary

 - The device that bridges the wireless and wired networks. Converts wireless MAC packets to wired NetAccess point (or AP)

packets and vice versa.

 - A frame sent in response to receiving a packet, confirming that the packet was properlyAcknowledgement (or ACK)

received. The ACK contains the time difference between the packet receiver and sender.

 - A frame sent to allow other devices to synchronize to the network and containing link information requiredAdvertisement

for a new mote to join.

 - Absolute Slot Number. The number of timeslots that have elapsed since the start of the network (WirelessHART) or ASN

20:00:00 UTC July 2,2002 (IP if UTC is set before starting the network)

 - The cryptographic process of ensuring that the packet received has not been modified, and that it originatedAuthentication

from the claimed net layer sender.

 - The fraction of user packets accepted (ACK'd) by the mote API. An persistent availability < 1 means that userAvailability

packet latency is increased due to full mote queues.

 - A feature in a SmartMesh network that allows motes to share a fast superframe to enable low-latency alarmBackbone

traffic.

 - The capacity of a mote to transmit data, usually expressed in packets/s.Bandwidth

 - The bandwidth each mote in a network gets without having to request a service.Base Bandwidth

 - ounter mode with BC- AC. The authentication/encryption scheme used in Dust products. See the application noteCCM* C C M

"SmartMesh Security" for a more detailed description,

 - The index into a list of center frequencies used by the PHY. In 802.15.4, there are 16 channels in the 2.4-2.4835Channel

GHz Instrumentation, Scientific, and Medical (ISM) band.

 - Changing channel between slots, also called "slow hopping" to distinguish from PHY's that change channelChannel Hopping

within a message, such as Bluetooth.

 - A link-specific number used in the channel calculation function to pick which channel to use in this ASN.Channel Offset

 - A device that receives time information from another mote is its child. A child forwards data through its parent.Child

 - Carrier Sense Multiple Access. A communications architecture where an unsynchronized transmitter first senses ifCSMA

others are transmitting before attempting its transmission.

 - The act of configuring motes for use in a deployment, typically by setting Network ID, join key, and otherCommissioning

joining parameters.

SmartMesh WirelessHART User's Guide Page of 10 135

 - The process by which motes find potential neighbors, and report that information back to the manager.Discovery

 - The direction away from the manager or wired-side application and into the mesh network.Downstream

 - The cryptographic process of converting payload information into a form indistinguishable from random noise,Encryption

such that it can only be read by the intended recipient.

 - Information sent by the PHY layer. Typically containing per-hop (MAC) and end-to-end (Net) layerFrame (or packet)

headers and a payload.

 - The device in a WirelessHART network responsible for abstracting the wired HART data model from theGateway

WirelessHART mesh implementation.

 - A numbered routing element included in the WirelessHART net and IP mesh layer headers which tells a mote where toGraph

send each packet. Superframes and slotframes also have a graph ID.

 - A route where only the graph ID is specified in the packet header. A packet can follow the graph route throughGraph route

multiple motes to its destination. Compare with source route.

 - The time a device listens in advance or after the expected packet arrival time to allow for imperfectGuard time

synchronization between devices.

 - A packet sent by a mote conveying its internal state and the quality of its neighbor paths. Health reports areHealth report

used by the manager in optimization and diagnostics.

 - A slot where the receiving device wakes up to receive a packet but the transmitting device does not send one.Idle listen

About two-thirds of all receive slots end up as idle listens in a typical network.

 - The sequence of handshakes between a new mote and a manager to bring the mote into the network. It begins withJoining

a mote presenting an encrypted request and ends with link and run-time security credential assignment.

 - An empty packet sent to keep devices synchronized after a timeout during which no data packets have been sentKeep alive

on a path. This timeout is typically 30 seconds in WirelessHART and 15 seconds in IP.

 - The time difference between packet generation and arrival at its final destination.Latency

 - A mote that presently has no upstream RX links, and thus no children. Also called a leaf node or leaf mote.Leaf

 - A logical or physical device which converts 6LowPAN (IPv6 for Low power WirelessLow Power Border Router (LBR)

Personal Area Networks, RFC 4944) packets into IPv6 packets. Also called an Edge Router.

 - The Medium Access Control layer. Technically a sublayer of the Data Link Layer (OSI layer 2), but typically usedMAC

interchangeably in Dust documentation.

 - The device or process responsible for establishing and maintaining the network.Manager

 - a mode of mote operation where the mote automatically joins the network for which it was configured, theMaster (mode)

serial API is disabled, and a resident application allows for interacting with some onboard I/O.

SmartMesh WirelessHART User's Guide Page of 11 135

 - A network topology where each mote may be connected to one or more motes.Mesh

 - A device which provides wireless communications for a field device to transmit sensor or other data. The basicMote

building block of a network.

 - A network where one or more motes has no path to the access point. Data packets may sometimes take multipleMulti-hop

hops from source to destination.

 - A radio signal that is the superposition of many reflected signals. Used as an adjective to describe phenomenonMultipath

where signal level can vary dramatically with small environmental changes, . multipath propagation, or multipath fading.i.e

 - A special ACK frame sent in response to receiving a packet, stating that it was correctly received but NOT accepted forNACK

forwarding.

 - A mote in range of the mote in question.Neighbor

 - A mote that has been configured to not advertise. A non-routing mote never forwards packets along a graph orNon-routing

has children.

 - The manager process of taking health report information and using it to modify the network to minimize energyOptimization

consumption and latency.

 - Also called a frame. The variable sized unit of data exchange.Packet

 - A device that serves as a source of time synchronization. In Dust networks, a mote's parent is oneParent (or time parent)

hop closer to the AP. A parent forwards a child's data towards the manager.

 - The potential connection between two motes. A path that has assigned links is a used path. One that has beenPath

discovered but has no links is an unused path.

 - The ratio of acknowledged packets to sent packets between two motes. Each of the two motes keeps aPath stability

separate count of the path stability denoted by A->B and B->A. A path where the two motes have significantly different counts

of path stability is called an asymmetric path.

 - A feature in a SmartMesh WirelessHART network that enables rapid publishing to and/or from a single target mote.Pipe

 - The number of links assigned by the manager per packet generated by the mote to allow for imperfect stability.Provisioning

Default provisioning is 3x meaning that on average each packet has three chances to be successfully transmitted before the

mote starts to accumulate packets.

 - The rate at which an mote application transmits upstream data. In WirelessHART the term burstPublishing rate (Burst rate)

rate is equivalent to Publishing rate.

 - The physical layer, . the radio.PHY i.e

 - The percentage of unique packets received relative to the number generated.Reliability

SmartMesh WirelessHART User's Guide Page of 12 135

 - The motes that a packet passes through between source and destination, . a packet from mote 3 might use theRoute e.g

route 3-2-6-AP. Because of the graph routing used upstream, packets originating at the same mote randomly take a variety of

routes.

 - The collection of superframes and links in the network, particularly those organized for a particular purpose.Schedule

 - The process of requesting and receiving (or not) task-specific bandwidth.Services (or Timetables)

 - a mode of mote operation where the mote requires an application to drive its API in order to join the network.Slave (mode)

 - A collection of timeslots with a particular repetition period (length) and labeled with a Graph ID.Slotframe or Superframe

 - A route where every hop between source and destination is explicitly specified in the packet header. DustSource route

networks only use source routing for downstream packets.

 - A network topology where all motes only have a connection to the the access point (in ZigBee, the PAN coordinator)Star

and are non-routing leafs.

 - A network topology where motes form stars around routers, where the routers may have one or more neighborsStar-mesh

through whom they can forward mote data.

 - The aggregated information about network topology and performance constructed from the raw mote healthStatistics

reports.

 - Time Division Multiple Access. A communications architecture where packetized information exchange only occursTDMA

within timeslots and channel offsets that are assigned exclusively to a pair of devices.

 - A defined period of time just long enough for a pair of motes to exchange a maximum-length packet and anTimeslot

acknowledgement. Time in the network is broken up into synchronized timeslots.

 - The direction towards the manager or wired-side application from the mesh network.Upstream

 - A single channel, CSMA network protocol.ZigBee

SmartMesh WirelessHART User's Guide Page of 13 135

3 The SmartMesh WirelessHART Network

3.1 Introduction

The Network User's Guide is intended to explain fundamental network and device behavior and features at a high level. For

details on the APIs referenced, see the Manager Guides and Mote Guides.SmartMesh WirelessHART

3.1.1 Network Overview

A SmartMesh® network consists of a self-forming multi-hop, mesh of nodes, known as , which collect and relay data,motes

and a that monitors and manages network performance and security, and exchanges data with a hostNetwork Manager

application.

SmartMesh networks communicate using a Time Slotted Channel Hopping (TSCH) link layer, pioneered by Linear's Dust

Networks group. In a TSCH network, all motes in the network are synchronized to within less than a millisecond. Time in the

network is organized into timeslots, which enables collision-free packet exchange and per-transmission channel-hopping. In a

SmartMesh network, every device has one or more (mote 3 has motes 1 and 2 as parents) that provide redundantparents e.g.

 to overcome communications interruption due to interference, physical obstruction or multi-path fading. If a packetpaths

transmission fails on one path, the next retransmission may try on a different path and different RF channel. Building networks

with sufficient redundancy requires following some simple deployment guidelines - these are outlined in the application note

"Planning a Deployment."

SmartMesh WirelessHART User's Guide Page of 14 135

A network begins to form when the network manager instructs its on-board access point radio (AP) to begin sending

 packets that contain information that enables a device to synchronize to the network and request to join. Thisadvertisements -

message exchange is part of the security handshake that establishes encrypted communications between the manager or

application, and mote. Once motes have joined the network, they maintain synchronization through time corrections when a

packet is acknowledged.

An ongoing process ensures that the network continually discovers new paths as the RF conditions change. Indiscovery

addition, each mote in the network tracks performance statistics (quality of used paths, and lists of potential paths) ande.g.

periodically sends that information to the network manager in packets called . The Network Manager uses healthhealth reports

reports to continually optimize the network to maintain >99.999% data reliability even in the most challenging RF

environments.

The use of TSCH allows SmartMesh devices to sleep in-between scheduled communications and draw very little power in this

state. Motes are only active in timeslots where they are scheduled to transmit or receive, typically resulting in a duty cycle of

<1%. The optimization software in the Network Manager coordinates this schedule automatically. When combined with the

Eterna low-power radio, every mote in a SmartMesh network – even busy routing ones – can run on batteries for years. By

default, all motes in a network are capable of routing traffic from other motes, which simplifies installation by avoiding the

complexity of having distinct routers vs. non-routing end nodes. Motes may be configured as to further reducenon-routing

that particular mote’s power consumption and to support a wide variety of network topologies.

SmartMesh WirelessHART User's Guide Page of 15 135

At the heart of SmartMesh motes and network managers is the Eterna IEEE 802.15.4e System-on-Chip (SoC), featuring our

highly-integrated, low power radio design, plus an ARM Cortex™-M3 32-bit microprocessor running SmartMesh networking®

software. The SmartMesh software comes fully compiled yet is configurable via a rich set of application programming

interfaces (APIs) which allows a host application to interact with the network, e.g. to transfer information to a device, to

configure data publishing rates on one or more motes, or to monitor network state or performance metrics. Data publishing

can be uniform or different for each device, with motes being able to publish infrequently or faster than once per second as

needed.

3.1.2 SmartMesh Network Features

SmartMesh networks provide a simple, reliable way to monitor and control processes and equipment. Using redundant,

multi-hop networking and ultra low-power hardware, SmartMesh networks offer unprecedented access to information about

the physical world.

SmartMesh networks are:

 —They are self-configuring, battery-powered networks that require no site survey or wireless expertiseEasy to Install

to install.

Benefit: You can deploy a SmartMesh Network within hours, not days.

 They provide redundant, self-healing routing that approaches the reliability of a wired network.Reliable—

SmartMesh WirelessHART User's Guide Page of 16 135

Benefit: You have the reliability of a wired network with the flexibility of wireless.

 —They provide network-wide quality-of-service metrics and control commands that simplify networkManageable

management.

Benefit: You can manage multiple networks from a single PC. No device-level coding or management is needed.

The SmartMesh WirelessHART Manager combines Dust Networks’ robust intelligent networking and industry-leading

low-power radio technology to achieve the high data reliability, lower latency, and deterministic power management required

for condition monitoring applications. The SmartMesh WirelessHART Manager acts as both a HART gateway and network

manager for motes, creating a self-configuring, reliable wireless mesh network.SmartMesh WirelessHART

The Starter Kit () comes standard with one SmartMesh manager and 5 motes. You canSmartMesh WirelessHART DC9007

configure, monitor, and manage your networks from a PC using onboard web-based administrative tools. Motes in the kits

ship in a standalone mode - they contain a sample application that controls joining and can interact with onboardmaster

sensors. In the production default mode, the mote expects an application to drive its API. This is discussed in moreslave

detail in the mote section of this guide.

3.2 Network Formation

For a mote to join a network, it needs to get time synchronized to the rest of the network. This is achieved by hearing an

 from a mote or Access Point (AP) already in the network. The network starts forming when the manageradvertisement

instructs the access point mote to begin sending advertisements. One mote will hear the AP advertisement, then join, and

start advertising itself. This process repeats in parallel as other motes join and begin their own advertising. The

advertisements are WirelessHART advertisement frames that contain synchronization and link information. In addition to

synchronizing the new device, the advertisement also describes when the new device can send in a request to join the

network, and when it should expect a reply. This results in temporary links being assigned to the joining mote that it will use

until it gets its specific links from the manager.

A WirelessHART manager advertises every 160 ms. Motes within radio range of the AP will join after they have heard one of

these advertisements. Average synchronization time for the first-hop motes, at a 5% duty cycle and a typical 80% path

stability is expected to be:

Synch time = adv rate per device * #channels / (#advertisers * path stability * join duty cycle)

 = 0.16 s * 15 / (1 * 0.8 * 0.05)

 = 60 s

Setting a higher join duty cycle increases the power of the searching mote but allows it to synch up more quickly. If your

network has a lot of 1-hop motes though, a low join duty cycle might not slow down the total join time by much at all. For

applications with ultra-low power limits, the join duty cycle can be set as low as 0.5%.

Following synchronization, a WirelessHART device is required to wait for a random time longer than 30 s before sending in a

join request. This is intended to reduce contention for limited joining resources in a large network.

http://www.linear.com/demo/?demo_board=DC9007

SmartMesh WirelessHART User's Guide Page of 17 135

3.2.1 Mote Joining

The join duty cycle can be changed using the command. This command may be issued multiplesetParameter<JoinDutyCycle>

times during the joining process but has no effect after join completion. A value different from the default will impact the

synch time calculated above and the power at the mote during the search period.

After synchronizing and waiting for the WirelessHART random timeout, the joining mote sends in a consisting ofjoin request

power source and routing-capability information, as well as a list of heard neighbors. The manager responds with a run-time

MAC layer authentication key, and a short address to be used by the mote in all communications from this point on. This

message exchange is part of the handshake that establishes encrypted communications between the manager orsecurity

application, and mote, and is encrypted using a shared secret .In WirelessHART, there are two destinations upstream,join key

the manager and the gateway. To each destination, the mote gets a route, a unicast session, and a broadcast session.

After the mote has progressed through the handshake, it transitions from using the links contained in advertisements to those

explicitly added by the mananager. At this point it starts advertising for other new motes and may request additional

bandwidth for publishing data. In this way the network will form 'inside out', starting with just the AP, then the one hop

motes, then two hop motes, and so on. For any one mote to join, it need not ever be brought into range of the manager. It

only needs to be within range of some motes that are in the network.

3.2.2 Discovery

In addition to the motes a joining mote hears, an ongoing process runs continuously. Each discovery interval, eachdiscovery

mote will randomly either listen (high probability) or transmit (low probability). This random process results in motes hearing

most of their neighbors every 15 minutes. Motes tell the manager who they've heard in a periodic which giveshealth report,

the manager a stream of potential path information to use in optimization and healing.

Mote ID

The 2-Byte mote ID is a nickname used in packets to avoid sending the full 8-byte MAC address over the air. The wireless

network uses that nickname to save power and to maximize payload size for customer applications. The mote is given a mote

ID by the Manager when it joins and the mote forgets it whenever it resets, as the Manager will assign it an ID the next time it

joins. The mote ID is NOT guaranteed to remain unique to that mote over its lifetime - only the MAC address uniquely

identifies that mote.

In SmartMesh Wireless HART, mote ID's are handed out in join order, and the mote ID is persisted through Manager reset or

power cycle. However if a mote is deleted and rejoins, or is moved to another Manager, it will get a different mote ID. While it

may be convenient or less confusing to use the nickname to identify a mote for a person analyzing the network at a particular

time (e.g. using the Command Line Interface or CLI), Manager API's use the 8-byte MAC address and a software application

should always ALWAYS use MAC address for mote interaction.

SmartMesh WirelessHART User's Guide Page of 18 135

3.3 Bandwidth and Latency

SmartMesh WirelessHART total upstream network throughput is determined by how many packets/s can pass through an AP.

Typical system throughput for a SmartMeshWirelessHART Manager (e.g. LTC5903-WHR) is ~24 packets/s . This bandwidth is

shared between motes, so one mote could transmit at 24 packets/s, or 24 motes at 1 packet/s, or 10 motes at 2 packets/s and

1 mote at 4 packets/s, or any other equivalent combination. Each packet supports a 90 B payload, so, this is equivalent to ~2

kbps.

In WirelessHART, the manager tries to give each mote two upstream parents and a minimum of four upstream links. The two

parents are required for a reliable mesh and the four upstream links are required to maintain time synchronization during

difficult periods. In optimizing our networks, we test out links to new parents for some motes, so occasionally motes will have

more than 2 parents. Depending on local and descendant traffic requirements, motes may end up with many more than 4

upstream links.

There are two ways of setting up bandwidth to carry data traffic. If all motes will generate data at the same interval, the base

bandwidth method can be used. If some motes have more data generation than others, the services mode must be used.

In general, adding more links to motes:

Decreases latency

Increases packet/s throughput

Increases power

There is no requirement to actually use all the bandwidth assigned to a mote. An application with low-latency requirements

can request more bandwidth than it needs to get additional links for itself and its ancestors to decrease its upstream latency.

Since the number of links required to meet a particular latency target varies by hop depth of a mote, we provide a mechanism

for requesting a particular upstream latency. In this case, the manager assigns an appropriate number of links to try to get the

mean latency to the target. Because of the uncertainty in path stability, we do not provide upper bounds on latency. For

extreme cases, the low-latency pipe discussed below can be used. Typical system throughput is ~ 24 packets/s, shared

between motes.

3.3.1 Base Bandwidth

The parameter (default = 100,000 ms) is the interval between packets generated at all motes. TherequestedBasePkPeriod

default setting is enough to carry all command and diagnostic packets. If all motes have the same data generation interval

then this value can be set appropriately to provision the entire network. For example, if all motes are going to report every 10

seconds, setting to 10,000 ms will give enough links to all motes to carry this traffic. This parameterrequestedBasePkPeriod

is settable through API on the manager and applies to the entire network.

Using the base bandwidth method, motes can start reporting immediately after activation as long as backoff is implemented

between the mote and the application.

SmartMesh WirelessHART User's Guide Page of 19 135

3.3.2 Services

Applications wishing to support different data generation rates or run-time configurable data rates must use the services

model, as must HART compliant products. In this model, the application is responsible for configuring the desired publish rate

- the sensor processor could be pre-configured or an application message could be used to configure publishing dynamically -

this is left to the OEM integrator. The command allows the device to initiate a new service request orsetParameter<service>

request an update to an existing service. The mote will then send a service request to the manager and the application must

wait until a successful reply has been received before starting to publish data. After receiving a service request from a mote,

the manager does not automatically send a reply when the required links have been added; the mote must continue polling the

manager until it gets a reply affirming that the service is ready.

3.3.3 Cascading Links

If a mote has children, it has to add more links to carry the traffic of all its descendants. The calculation of this requirement is

called links. In SmartMesh WirelessHART, the manager doesn't just consider the input links to a device but insteadcascading

calculates the expected traffic that will be on these links. In some cases, a device may have several upstream RX links that are

used to maintain synch for its children but just a small number of upstream TX links because there isn't much traffic

forwarded by this mote. All motes only get as many links as they need for network health and traffic in order to reduce power

throughout the network.

3.3.4 Downstream Bandwidth

The WirelessHART AP has several downstream TX links in addition to a single broadcast TX link. Only a subset ofmulticast

the 1-hop motes listen to each multicast link allowing them to maintain a low-power configuration while giving the AP more

bandwidth into the network. This decreases the network formation time and increases the speed for applications which

sequentially send downstream packets to each device in the network during steady-state operation.

There are two bandwidth profiles implemented for WirelessHART which differ only in their downstream capacity. The default

profile is which allows about 4.5 pkt/s to be injected by the AP into the network. The ultra-low power profile hasP1 P2

one-eighth of the downstream capacity. Using can save all devices about 9 μA but takes longer to build the network andP2

greatly reduces downstream application bandwidth. As such, it is recommended only for deployments that have tight power

budgets and do not require constant polling of devices by the application.

3.3.5 Fast Services on the Pipe

The WirelessHART manager is able to lay in fast upstream and/or downstream bandwidth on a special graph known as the

. The pipe links live on a short slotframe which allows the destination mote to publish and/or receive data quickly. Thepipe

pipe can only be used for one destination mote at a time and is intended as a temporary addition to a network in order to

rapidly upload or download a large amount of data.

SmartMesh WirelessHART User's Guide Page of 20 135

The pipe should be explicitly requested by the application for a particular mote and it is expected to delete the pipe when it is

no longer needed. If the mote is several hops deep, additional links are activated at each hop between the AP and the

destination mote, so all of these devices will use extra current during time the pipe is in place. The route followed by the pipe

is NOT a mesh, meaning that each hop points to a specific next mote. However, packets are allowed to use the regular

upstream graph in addition to the upstream pipe, so there is no danger of a packet getting lost for a single path failure.

3.4 Data Traffic

An application connected to the manager can use the API to send arbitrary packets to a mote. Messages mustsendRequest

prepend a 4-byte header - 0x0000FC12 - this is to wrap the packet for the HART network layer, even for non-HART usage.

Motes are addressed by EUI-64. When the API is called, a is returned - this will be included in the callbackId callbackId

 notification when this packet is injected into the network. When the packet is received at the mote, a netPacketSent

 notification is generated which contains source address - Manager (0xF980) or Gateway (0xF981) and adataReceived

sequence number in addition to the data payload.

The sensor processor may use the API at the mote to send packets to the gateway or the manager. Certain fields thatsend

pertain to WirelessHART must be filled in (such as) regardless of whether the destination is a WirelessHARTappDomain

device. These will result in a notification, which contains the EUI-64 address of the mote, a timestamp, and the dataData

payload.

SmartMesh WirelessHART User's Guide Page of 21 135

3.5 Security

3.5.1 Security Layers

All packets in a SmartMesh network are authenticated on each layer, and encrypted end-to-end.

Authentication - verifying that a message is from the stated sender, and that it has not been altered, or replayed

Encryption - keeping payloads confidential

SmartMesh WirelessHART has several layers of security:

Link-layer - packets are authenticated at each hop using a run-time key and a time-based counter - this ensures that

only motes that are synchronized and been admitted into the network by the manager can send messages.

End-to-end - packets are authenticated and encrypted end-to-end using run-time and a shared counter -session keys

this ensures that only the intended recipient will understand the message (data privacy), and that replays, data

corruption, or man-in-the-middle attacks can be avoided (data security).

When joining, motes send a to the network manager using a shared-secret known by the manager.join request join key

Choice of keys is determined by the security mode, discussed below. The mote encrypts its join request with its join key, and

the manager responds with a for end-to-end encryption of data traffic - this is known as the .session key security handshake

Advertisements are a link-layer special case - they are authenticated with a well-known key to allow any new mote to

authenticate them.

Once a mote has joined with the correct join key, it receives four session keys that are used to encrypt network data in

operation:

A mote-specific session key used for network management traffic

A mote-specific session key used for application traffic

A broadcast session key used by all motes for network management

A broadcast session key used by all motes for application traffic

Using these four keys, all regular data publishes are encrypted by the generating mote and can only be decrypted at the

manager. Neither eavesdroppers nor routing motes can decrypt the packet data. Similarly, responses to manager commands

can only be read by the manager. Downstream commands to a particular mote cannot be understood by routing motes or

unintended recipients. Only commands sent explicitly to all motes in the network can be understood by all, being decrypted

using the appropriate broadcast key.

SmartMesh WirelessHART User's Guide Page of 22 135

3.5.2 Security Modes

SmartMesh WirelessHART has a choice of security modes that determine how the manager decrypts the join request. The

manager can do this in three different ways:

Common Key: The least strict security mode is to accept a common join key. In this mode the manager will accept any

mote that provides a join request encrypted with the common (network wide) join key. Dust Networks’ network

managers ship with a default common join key and Network ID that should be considered public knowledge. If the

Network ID and common join key are left unchanged, overhearing and decrypting the packets that assign the session

keys is difficult, however technically possible. Therefore, it is highly recommended to change the common join key to a

secret one.

Access Control List (ACL): The manager can also be set up to only accept motes on an access control list. The

manager will take the join request, and first look for the serial number of the joining mote, and then decrypt the

request with the associated join key. If both steps are successful, the mote will be accepted into the network. The ACL

should be set up with a unique join key for every mote. This is the most secure mode, but requires the most effort on

the part of the commissioning workforce, since it requires that the manager and all the motes be configured prior to

deployment in order to work together. If these devices are already configured correctly, the installer need take no

action - the mote will join when it hears an advertisement. The ACL can be set up with a common key - this provides

some additional security over the common key alone, as the devices MAC address must be known to the manager for

it to be able to join.

Common Key -> ACL: It is also possible to form the network with a common key, then construct an ACL and assign

unique keys to each mote over the air.

SmartMesh WirelessHART User's Guide Page of 23 135

4 The SmartMesh WirelessHART Manager

4.1 Introduction

The Manager is the "brains" of a network. The manager is responsibleSmartMesh WirelessHART SmartMesh WirelessHART

for:

Managing security information such as keys and nonce counters and distributing these to the network

Determining the link schedule for every mote to ensure that time synchronization can be maintained and data service

levels can be met

Collecting health reports to continually update its picture of the network

Responding to changes in topology

Optimizing the network to minimize energy and spread traffic

Presenting user interfaces to a network Host

The SmartMesh WirelessHART Manager provides configuration, management, and access point functionality for a network of

motes. The embeddable manager includes a wireless transceiver, processor and memory, real-timSmartMesh WirelessHART

clock, embedded networking software, and interfaces to host systems. The SmartMesh WirelessHART Manager hosts an

XML-RPC API that allows programmatic access to network control commands, performance statistics, and connectivity

details. In addition, the manager offers administrative interfaces via its Web-based utility and text-basedAdmin Toolset

Command Line Interface (CLI).

The LTP5903-WHR manager supports networks of up to 500 motes, and its AP is modularly certified.

4.1.1 Embeddable Manager

See the for details on the available ports, power supply considerations, signal timing, etc.LTP5903-WHR Datasheet

4.1.2 Packaged Manager

The LTP5903-WHR is also available as a fully integrated standalone manager. The LTP5903CEN-WHR manager provides a

10/100Base-T Ethernet interface and two serial interfaces (serial 3 is not enabled), a power supply connector, antenna, reset

and factory restore switches, and status LEDs.

The status LEDs provide the following information:

 —The Power LED is on when the 12 V power supply provided with the LTP5903CEN-WHR isPower (Green)

connected and functioning properly.

 —Indicates that a client program is subscribed to the manager API.Subscription (Yellow)

 —Blinks when there is data activity over the radio.Radio (Yellow)

http://www.linear.com/docs/42454
http://www.linear.com/docs/41869

SmartMesh WirelessHART User's Guide Page of 24 135

Steps in Designing a Manager Client Application

Although the manager has many tasks it needs to do in order to manage a network, a client has relatively few. At a minimum,

it should:

Connect to the Manager

Configure any parameters needed prior to join (such as)networkID

Subscribe to notifications to observe mote status and collect data

The covers other commands to configure the manager, e.g. configure securitySmartMesh WirelessHART Manager API Guide

(use of ACL). The guide covers using the human interface to observe managerSmartMesh WirelessHART Manager CLI Guide

activity (including traces of mote state or data).

Manager vs. Gateway

In a WirelessHART network, there is a distinction between a Manager and a Gateway:

The Manager interacts with the wireless portion of the network, and builds and maintains the wireless mesh. There is

an additional logical entity called the Security Manager which is responsible for key management and packet

encryption/decryption that is also contained within our Manager. Often the manager is embedded within a Gateway

box, but the two have distinct roles.

The Gateway bridges between the customer application, e.g. an asset management system that is speaking wired

HART, and the field devices in the wireless mesh. It does this through Manager APIs, including ones to send/receive

HART and WirelessHART commands. The packaged manager can interface directly with a customer application

(typically a non-HART customer), but isn't a WirelessHART gateway.

For more details, see HCF_Spec-085, section 6.2.

http://www.linear.com/docs/41890
http://www.linear.com/docs/41889

SmartMesh WirelessHART User's Guide Page of 25 135

4.2 Manager Interfaces

4.2.1 Wired Interfaces

The physical inferfaces described are found on the LTP5903CEN-WHR standalone Manager. See the LTP5903-WHR Datasheet

for details on connecting to these interfaces on an embeddable manager.

10/100Base-T Ethernet Interface

The 10/100Base-T Ethernet interface is a standard RJ45 connector which provides users with direct access to manager’s

 and the utility. The Linux console and the Manager command line interface (CLI) can also beXML-RPC API Admin Toolset

accessed via secure shell (SSH) over this interface. See the section "Managing Users and Passwords" in the SmartMesh

 for login details.WirelessHART Manager CLI Guide

Port Description Signaling

Ethernet 10/100Base-T Ethernet IEEE 802.3 10/100Base-T (autosensing)

Ethernet Port Hardware Specifications

Serial 2 Interface

The Serial 2 interface (9-pin D-SUB female connector) is dedicated to the Manager’s CLI.

Port Description Signaling

Serial 2 UART 9-pin RS232 levels

Serial 2 Port Hardware Specifications

The Serial 2 port operates at 115200 baud, 8 data bits, No parity, 1 stop bit, no flow control.

9-pin D-SUB Female Connector

http://www.linear.com/docs/41869
http://www.linear.com/docs/42454
http://www.linear.com/docs/42454
http://www.linear.com/docs/41889
http://www.linear.com/docs/41889

SmartMesh WirelessHART User's Guide Page of 26 135

Serial 1 Interface

By default the Serial 1 interface is configured to expose the Manager's CLI, however iit requires special cabling to do so. See

.This interface can also be configured to run point-to-point protocol (PPP),Assembling a 9-pin D-SUB Adapter for Serial 1

allowing access the Manager’s . See for details. Using PPP, an external gatewayXML-RPC API Configuring PPP on Serial 1

processor can also allow SSH into the Manager for access to the Linux console and the Manager CLI.

4.2.2 Software Interfaces

Command Line Interface (CLI)

The SmartMesh WirelessHART Manager provides a command line interface that can be accessed through a terminal program

(such as TeraTerm or PuTTY). The CLI is intended for human interaction with the manager process, . during developmente.g

to observe various traces. System parameters such as Network ID can be configured through the CLI. System and network

status information can also be retrieved via this interface. CLI access is protected with user name/password that may be

changed by the user.

For more detailed information on connection to the CLI and the commands that are available, refer to the

.SmartMesh WirelessHART Manager CLI Guide

Application Programming Interface (API)

The SmartMesh WirelessHART Manager XML-RPC API provides a programmatic interface for interacting with the network.

Host applications use the API to communicate with the manager. The XML-RPC API is an Extensible Markup Language (XML)

interface that lets a client application send Remote Procedure Call (RPC) requests to the manager and receive responses and

other data from the manager via XML-RPC. The API consists of a Control Channel and a Notification Channel. The Control

Channel is used to establish connection and exchange commands and information about the SmartMesh Network. The

Notification Channel is used to stream data and network events to the client Host program.

The following tools are available for experimenting with and communicating with the Manager API:

The Python Developer SDK provides tools for performing common tasks and experimentation with the API.

For more detailed information on connection to the API and the commands that are available, refer to the

.SmartMesh WirelessHART Manager API Guide

http://www.linear.com/docs/42454
http://www.linear.com/docs/41889
http://www.linear.com/docs/41890

SmartMesh WirelessHART User's Guide Page of 27 135

Admin Toolset

The manager provides a Web-based administrative tool, called Admin Toolset, which can be used to view network statistics

and mote and alarm information, configure serial and Ethernet port settings, set the clock or enable the Network Time

Protocol (NTP) server, set the network security mode, and execute selective commands. The provides aAdmin Toolset

graphical view of the wireless network (Topology Viewer) and an interface for configuring the manager. You can also use

Admin Toolset to upgrade the manager software as well as perform remote software updates on motes in the wireless

network. The Admin Toolset utility is described in detail in the "Admin Toolset" section of the SmartMesh WirelessHART Tools

.Guide

http://www.linear.com/docs/42454
http://www.linear.com/docs/42454
http://www.linear.com/docs/42454
http://ltspice.linear.com/dust/SmartMesh%20WirelessHART%20Tools%20Guide.pdf

SmartMesh WirelessHART User's Guide Page of 28 135

1.

2.

3.

4.

5.

6.

4.3 Connecting to the Manager

4.3.1 Connecting the Manager Directly to a Windows Computer

The SmartMesh WirelessHART Manager is pre-configured with the static IP address 192.168.99.100 for connection directly to

a computer. You can temporarily set the computer IP address to a static address that enables the computer to communicate

with the manager. The instructions below are for Windows XP. The steps will vary if you are using another OS on your

computer.

To use the manager with its default static address, your computer will need to act as the Ethernet gateway. You may

need to use an Ethernet cross-over cable to connect the manager to your computer. We recommend using the

manager on a LAN using DHCP or an administrator supplied IP address, as described below.

 To set the Windows PC IP address to

a static address:

On the menu, click .Start Control Panel

Double-click .Network Connections

Right-click , and then click .Local Area Connection Properties

Click , and then click .Internet Protocol (TCP/IP) Properties

Click , and enter the following information:Use the following IP address

 IP Address: 192.168.99.101

 : Subnet Mask 255.255.255.0

Click to close the dialog boxes.OK

When you are finished using the manager, you can switch your computer IP address back by selecting “Obtain an IP address

automatically” on the General tab in the Internet Protocol (TCP/IP) Properties window.

SmartMesh WirelessHART User's Guide Page of 29 135

1.

2.

3.

4.

5.

4.3.2 Connecting to the Manager on the LAN

To connect to the manager on the LAN, you will need to change the IP address, as the default is not suitable for most

networks. You can either configure the manager to use DHCP to obtain a LAN-assigned IP address, or assign a static LAN IP

address to the manager. If you want to use a static LAN IP address, you will need to obtain this address from the LAN

administrator.

To configure the Manager network settings:

Establish a console connection to the manager using HyperTerminal or similar software using the following serial

settings: 115200 baud, 8 data bits, No parity, 1 stop bit, no flow control.

At the manager login, enter the user name (default:)dust

At the manager password, enter password (default:)dust

Connect the manager to the LAN using the Ethernet straight-through cable.

Configure the manager to use DHCP or assign a static LAN IP address.

SmartMesh WirelessHART User's Guide Page of 30 135

To configure the manager to use DHCP, use the following commands on the Linux prompt:

dust@manager:~$ sudo ifswitch-to-dhcp

Switching interface to DHCP... eth0 down interfaces modified setting ethernet options: speed=100

duplex=full

ADDRCONF(NETDEV_UP): eth0: link is not ready

udhcpc (v1.13.2) started

Sending discover...

Sending discover...

Sending discover...

No lease, forking to background

eth0 up Done!

The manager must be connected to the LAN (step 4) before the command issudo ifswitch-to-dhcp

issued or an IP address will not be assigned to the manager by the DHCP server.

To configure the manager to use a static LAN IP address (here 172.16.1.103), enter the following on the Linux command

prompt:

dust@manager:~$ sudo ifswitch-to-static 172.16.1.103

Switching interface to static IP allocation... ifdown: interface eth0 not configured

eth0 down interfaces modified setting ethernet options: speed=100 duplex=full

ADDRCONF(NETDEV_UP): eth0: link is not ready

eth0 up Done!

SmartMesh WirelessHART User's Guide Page of 31 135

To verify that the manager’s IP address has been changed (on eth0), enter:

dust@manager:~$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:17:0D:80:10:5B

 inet addr:172.16.1.109 Bcast:172.16.1.255 Mask:255.255.255.0

 UP BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:1 dropped:0 overruns:0 frame:0

 TX packets:1 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:90 (90.0 B)

 Interrupt:21 Base address:0x4000

...

If the manager is configured to use DHCP, it must always have an Ethernet connection to the LAN when it is

powered on or reset or it will not receive a LAN IP address from the DHCP server. If you power on or reset the

manager before connecting it to the LAN, you will need to establish a terminal connection to the manager and issue

the command to prompt the DHCP server to assign the manager a LAN IP address.sudo ifswitch-to-dhcp

SmartMesh WirelessHART User's Guide Page of 32 135

1.

2.

3.

4.

4.3.3 Accessing Admin Toolset

The SmartMesh WirelessHART Manager can be administered using the Admin Toolset web interface. To access Admin

Toolset:

Determine the manager's IP address

In your web browser, open a connection to - note that this is a securehttps://manager's_ip_address/

connection (https)

Admin Toolset uses a self-signed certificate; most web browsers will warn about this and you will need to click

through a button to continueProceed Anyway

Admin Toolset requires authentication; the default username is and password is system system

4.3.4 Configuring the Firewall

Beginning with SmartMesh WirelessHART Manager manager version 4.0, the firewall installed on the manager allows you to

restrict communication on some of the manager ports. The table below lists the ports that are open by default when the

manager is shipped. These ports can be restricted by configuring the file . Communication can be/etc/firewall.conf

restricted to a specific range of IP addresses, or to (effectively blocking the port).localhost

Port # Type Service

22 TCP SSH

443 TCP HTTPS

53 UDP DNS

123 TCP/UDP NTP

4445 TCP XML API, plaintext

4446 TCP XML API, SSL

24112 TCP XML API notification, plaintext

24113 TCP XML notification, SSL

Manager Ports

The ports for the XML API can be configured in the file. If the XML API ports are changed, the firewallsystem.ini

configuration must be adjusted to match.

SmartMesh WirelessHART User's Guide Page of 33 135

1.

2.

1.

2.

1.

2.

3.

4.

To configure the XML API:

Edit the contents of . The and /opt/dust-manager/conf/config/system.ini PORT_CTRL_TCP

 parameters control the plaintext and SSL API control ports. The and PORT_CTRL_SSL PORT_NOTIF_TCP

 control the plaintext and SSL notification ports.PORT_NOTIF_SSL

The parameters must be uncommented (remove the at the start of the line) to take effect.#

Restart the Manager software.

To configure the firewall:

Access the Linux login prompt by entering the CLI username and password (default is). / dust dust

Edit the contents of by running:/etc/firewall.conf

$ sudo vi /etc/firewall.conf

See the instructions in the file for an example of how the entries can be changed.

4.3.5 Changing the CLI Password

You can change the default Linux login password. To change the password, first login with your old name/password and

follow these steps:

Enter: passwd

When prompted, enter the old password.

Enter the new password.

Re-enter the new password.

SmartMesh WirelessHART User's Guide Page of 34 135

4.4 Administering the Manager

4.4.1 Root Access

In addition to the web-based Admin Toolset which is described in the , the SmartMeshSmartMesh WirelessHART Tools Guide

WirelessHART Manager can be administered through the Linux console from an SSH connection or a serial connection to the

Serial 2 port. See the for connection details. The user has accessSmartMesh WirelessHART Manager CLI Guide dust sudo

to some system administration commands. Although root access is not normally required, if needed the user can change to

root via the command:su

$ su sur+cycl3s

The root password should be considered public knowledge. Users cannot log in remotely as - they must first login as root

, and then change users to via the Linux command. For that reason it is that if the manager is addressabledust root su critical

from the outside world (i.e. it is not behind a firewall), then the password be changed. Changing the password isdust dust

sufficient for most attack scenarios. This can be done with the following script (e.g. to change it 'newPassword!'):

$ sudo set-dust-password newPassword!

4.4.2 Network ID

Overlapping installations can be arranged into separate networks by assigning unique Network IDs to the motes and Manager

in each network. Motes won't communicate with motes or a Manager that are using a different Network ID. The Network ID

stored in the Manager configuration can be updated through the API or the CLI command. ThesetConfig set network

Manager must be restarted to use the new Network ID.

Each SmartMesh Manager ships with a default Network ID. To change the Network ID, use the commands described in the

following table. The command can be used to change the Network ID for all motes that are in a particularexchangeNetworkId

network. The command reliably pushes a new Network ID to all the motes in a network. If a mote fails toexchangeNetworkId

acknowledge the exchange Network ID operation, the mote is removed from the network. The operationexchangeNetworkId

may take several minutes to complete. The network ID can also be changed on a mote-by-mote basis using the

 command.exchangeMoteNetworkId

Command Description

Use to set the field of the setConfig networkId Network

element

Changes Network ID on the manager.

http://www.linear.com/docs/42454
http://ltspice.linear.com/dust/SmartMesh%20WirelessHART%20Tools%20Guide.pdf
http://www.linear.com/docs/41889

SmartMesh WirelessHART User's Guide Page of 35 135

1.

2.

3.

1.

2.

exchangeNetworkId Changes Network ID on the manager and all network

motes.

exchangeMoteNetworkId Changes the Network ID for a specified mote.

Exchange Network ID command

The command initiates an update of the Network ID for all motes in the network. The Network ID isexchangeNetworkId

exchanged without loss of data. The execution of the exchange is set in the future to allow time for the command to propagate

across the network and allow time for re-transmissions. The manager generates a event when the command issysCmdFinish

synchronously executed by the motes. The delay is typically tens of minutes after the command is issuedexchangeNetworkId

and depends on the network size and configuration. For networks using the configuration, the delay is ~21 minutes. DuringP1

this period, no additional commands may be issued. After the exchange is completed, the manager andexchangeNetworkId

motes must be reset for the new Network ID to become effective.

Note that network motes must be in the Operational state when the command is issued in order for themexchangeNetworkId

to receive the new Network ID. For best results, use the following procedure:

Before exchanging the Network ID, first determine if all network motes are operational by using the getConfig

command to retrieve the state of all motes in the network. If there are non-operational motes, wait for them to rejoin

the network. If they do not rejoin within an hour, troubleshoot the problem (for example, check the mote batteries).

When all motes are operational, issue the command.exchangeNetworkId

When the event is received, reissue the command to determine if all motes are operational.sysCmdFinish getConfig

Do one of the following, depending on the outcome:

If all motes are operational, they have all received the new Network ID. Reset the network.

If some motes are non-operational, wait up to an hour to see if the missing motes can rejoin the network. If the

missing motes do not rejoin, repeat steps 2 and 3 with the old Network ID so that these motes can rejoin. Then

repeat steps 1-3 with the new Network ID.

4.4.3 Network Time

The Manager handles time synchronization in the network. By default, the Manager is configured to automatically start the

network when it boots. Once the network starts, the time in the network (ASN) will drift synchronously on all in-network

devices. The manager will use Linux system time as a reference, pushing the mapping between UTC and ASN periodically to

the network.

A Host Application can query the current time on the Manager using the getTime API.

The response contains the current Manager time in several formats:

: seconds and microseconds since Jan 1, 1970 in UTCUnix (UTC) time

: Absolute Slot Number, i.e. number of slots since ASN=0, which maps to the manager start time.ASN

SmartMesh WirelessHART User's Guide Page of 36 135

1.

1.

2.

2.

3.

4.

4.4.4 Software Licensing

The SmartMesh WirelessHART Manager supports a software license mechanism that allows optional software features to be

enabled in the field. For example, a manager may be enabled for large network size with the purchase of a software license

key.

To exercise the software license mechanism:

Obtain the following information specific to your manager. This information is needed to obtain an updated software

license key.

Retrieve the manager's Serial Number by using the command. This information is also listed inget system

the System element in the Manager API.

Retrieve the current software license value by using the command from the Managerexec getLicense

CLI. The command is also available in the Manager API.getLicense

Contact Dust Networks with the information retrieved in step 1 to obtain an updated software license key.

Use the command to enter the new license key. The command is also available inexec setLicence setLicense

the Manager API.

Restart the manager software to enable the new license. Once the new license is enabled, it will possible to enable

additional features through the Manager configuration. Some features may require the Manager to be restarted after

the configuration is updated.

4.5 Network Activity

4.5.1 Network Structure and Formation

The SmartMesh WirelessHART Manager performs automatic network management operations to maintain the health of the

network as well as optimize it for the lowest power consumption and highest reliability. The manager also dynamically makes

changes to the mesh as conditions in the network vary, such as path stability changes due to interference, addition and

removal of service requirements, and addition and removal of devices. The customer applications never have to get involved in

the management aspects of the network.

If motes are powered up in the vicinity of a manager, they will start joining almost immediately. The AP advertises on average

twice per second and motes, once joined, advertise once every two seconds. All motes will advertise except for those explicitly

designated "non-routing". The manager does not deactivate advertising; if desired, advertising must be deactivated by the

application and can save power on each mote. Such an application must be able to detect lost motes and reactivate

advertisement to retrieve them.

In order for a mote to join a Manager's network, the mote must be assigned the Network ID used by the Manager. The

Manager and mote exchange several messages in the join process to establish security keys and proper network routing. The

mote goes through several state changes during the join process, ending in the state. The Manager will detect if aOperational

mote leaves the network and will update the mote's state to .Lost

SmartMesh WirelessHART User's Guide Page of 37 135

An External application can keep track of motes joining and leaving the network by listening to Event notifications.

4.5.2 Communicating with Motes

Once motes are , the customer's host application can communicating with motes and with the attached sensorOperational

processors via Manager APIs. The application uses the API to send packets to a mote and receives upstreamsendRequest

data from motes by listening to notifications.data

4.5.3 Network Health

The motes and Manager each keep track of network and device statistics.

Statistics queries are available through the following API commands:

 provides network-wide statistics.getConfig<network>

provides statistics accumulated from communicating with a mote. getConfig<motes>

From the CLI, the various commands will return information about the networkshow

4.5.4 Health Reports

Motes periodically report statistics to the Manager in health reports. The Manager uses the health reports to determine a

mote's neighbors and path stability for network optimization. The Manager accumulates interval and lifetime statistics but the

Manager does not store individual health reports.

Health reports are available as notifications in the API (as of version 4.1), so an external application connected to the Manager

can subscribe to health report notifications and track network statistics in detail over time.

4.5.5 Optimization

Based on information in the health reports, the manager continuously works on improving the network. For each mote, the

manager considers how the existing parents compare to other neighbors discovered by the mote. If one existing parent looks

better than the other, or if a discovered but unused neighbor looks like it would make a better parent, the manager will add a

link from the mote to the better parent. This is called the cycle. Comparing the parents involves comparing aoptimization add

scoring function that takes into account path stability, the hop distance to the AP, and the relative number of links on the

mote. The manager tries to reduce the energy consumption in the network by having each packet transit fewer, higher stability

hops and tries to balance the load at the busiest motes. During the add cycle, the manager often has to guess at which paths

are going to be best for the network and tries them out by adding single links to each mote.

SmartMesh WirelessHART User's Guide Page of 38 135

After an hour, the manager has collected four health reports from the mote with the new parent and then has sufficient data to

quantify which parents are best. Any mote with an extra link at this stage will delete the link to its worst parent, again by the

same scoring metric. This is called the cycle. The process continues for the life of the network, alternatingoptimization delete

add-delete-add-delete, each one hour apart. Running continuously allows the network to adapt to any changes in the

environment.

SmartMesh WirelessHART User's Guide Page of 39 135

4.6 Network Bandwidth Control

The SmartMesh WirelessHART Manager supports dynamic bandwidth to accommodate the bandwidth requirements of

complex applications common in industrial monitoring and control. For example, a network canSmartMesh WirelessHART

support request/response maintenance traffic from a controller or gateway down to a network device while simultaneously

activating a fast pipe for block transfer at the request of a worker in the field. The manager precisely allocates network

resources to support the bandwidth requirements of the application while maintaining ultra-low power consumption across

the network. To support these applications, bandwidth can be requested by either the network manager using the manager

API commands or requested by network devices through bandwidth service requests. In response to these bandwidth

controls, the network manager will schedule links in the network to increase bandwidth, or in some cases may activate a fast

bandwidth pipe.

This section describes the manager API commands for both requesting bandwidth and controlling the bandwidth allocated to

service requests. The manager API enables the following:

Limits on Service-Requested bandwidthdefine maximum bandwidth that may be granted to service requests.

Manager-requested bandwidthdefines network-wide minimum bandwidth.

Allocated bandwidthreturn the total bandwidth allocated to a specific device.

Pipe activationenables the fast pipe to be activated or deactivated through the manager API and provides visibility to

the pipe status.

Since fast pipes may be activated by the network manager as a result of a manager API command or from a service request

from a network device, it is worth noting that the device that requested the bandwidth owns and controls it. That is, a pipe

activated by service request can only be deactivated by a subsequent request from the same device. Similarly, a pipe activated

by manager API can only be deactivated by manager API. In addition to manager-initiated bandwidth control, there are also

mechanisms by which the mote can exercise bandwidth control. For more information, see the “Bandwidth Services” section

in the .SmartMesh WirelessHART Mote API Guide

SmartMesh motes ask for bandwidth in terms of the interval between packets. For example, a mote expected to

generate one packet every 30s requests a 30s service. A mote requesting a 5s service will need more links per

second to carry this traffic, and hence needs more bandwidth. Because of this relationship, the minimum packet

interval allowed corresponds to the maximum bandwidth.

Manager API

Parameter

Description (see)SmartMesh WirelessHART Manager API Guide

User-Settable

Bandwidth Limits

http://www.linear.com/docs/41893
http://www.linear.com/docs/41890

SmartMesh WirelessHART User's Guide Page of 40 135

minServicesPkPeriod Limits non-pipe services. Defines minimum data interval (in ms/packet) that a single mote may be

allocated for the total of non-pipe, user requested bandwidth. Limits service requests from a mote.

See the elementNetwork

minPipePkPeriod Limits pipe bandwidth. Limits bandwidth on all pipes (both manager-API requested and pipes as a

result of service request). Most useful for regulating service requests from field devices.

See the elementNetwork

Manager-API Driven

Bandwidth Requests

requestedBasePkPeriod Network-wide minimum data interval (in ms/packet). Note that the requestedBasePkPeriod

parameter applies to manager-controlled bandwidth, which is independent from bandwidth

requested through mote service requests. Any mote service requests will be on top of

.requestedBasePkPeriod

See the elementNetwork

Allocated Bandwidth

allocatedPipePkPeriod Pipe bandwidth. Returns usable bandwidth allocated to the pipe.

See the elementMote

netServiceDenied XML API notification that indicates when a network service has been denied. The

 limit has been reached or there is a bottleneck in the network, as indicatedminServicesPkPeriod

by the Mote's flag.needNeighbor

See the notificationnetServiceDenied

Pipe Activation

activateFastPipe

command

XML API command to turn on a pipe. This command requests activation of a fast pipe to a specific

Mote. The pipe can be upstream, downstream or bidirectional.

See the commandactivateFastPipe

netPipeOn XML API pipe activation notification. This notification is sent by the manager API, signifying that a

pipe has been activated. The notification contains the allocated bandwidth for the pipe.

See the notificationnetPipeOn

pipeStatus The status of a mote's pipe is indicated in the Mote's parameter.pipeStatus

See the elementMote

SmartMesh WirelessHART User's Guide Page of 41 135

4.7 Access Control

4.7.1 Network Security

The manager API offers a choice of network security modes:

Accept Common Join Key

Accept ACL

Quarantine on Common Join Key (Added in Manager 4.1)

The security mode is specified as part of the Security element.

Common Join Key Mode

If the security mode is set to , any mote sharing the network manager’s common join key is allowedAccept Common Join Key

into the network, as well as any mote on the access control list (see the following section, ACL Mode). The join key is a

symmetric encryption key that is shared between the manager and the motes in its network. The manager ships with a default

common join key, which should be considered public knowledge. The default common join key is typically changed in advance

of network deployment, but can also be changed after the network has formed. If the common join key is left unchanged,

overhearing and decrypting the packets that assign the session keys is difficult, but technically possible. Therefore, it is highly

recommended to change the common join key to a secret one.

To change the common join key, use the commands described in the following table.

Command Description

Use to set the field of the setConfig commonJoinKey Security

element

Changes the common join key on the manager.

exchangeJoinKey Changes the common join key on the manager and network

motes.

SmartMesh WirelessHART User's Guide Page of 42 135

ACL Mode

If the security mode is set to , only motes on the manager’s Access Control List (ACL) are allowed to join theAccept ACL

network. If the ACL contains no entries, no motes will be allowed to join the network. The ACL is managed by the OEM host

application, which uses the command to add motes and the command to remove motes from thecreateConfig deleteConfig

ACL. Note that the ACL list can be set up with the same join key for all motes, or a unique join key for each mote.

Using the ACL with a unique join key for each mote provides the highest security but requires the most effort on the part of

the commissioning workforce to configure the manager and the motes to work together. The ACL can be configured in

advance of network deployment if the MAC address of each network mote is known. If the MAC addresses are not known, the

motes may be allowed to join the network using the default common join key and the ACL can be configured after getting the

mote MAC addresses from the event notifications that are sent to the manager when a mote joins the network.netMoteJoin

Before adding a new mote to an ACL network, you must first add the mote’s MAC address and join key to the ACL list. When

removing a mote from an ACL network, you should remove the mote MAC address from the ACL to preserve network security.

To change the mote join key in Accept ACL mode, use the commands described in the following table.

After changing the security mode to accept ACL it is advised that you reset the network to remove any motes that may have

previously joined the network using the common join key.

Command Description

Use to set the field of a mote listed in thesetConfig joinKey

ACL.

Changes a mote join key in the manager's ACL.

exchangeMoteJoinKey Changes a mote join key on the manager and the specified

mote.

Quarantine Mode

(Added in Manager 4.1)

If the security mode is set to , the motes that join with the common join key are allowed into thequarantineOnCommonJoinKey

network, but placed in quarantine.

Motes are configured with a common Quarantine join key at the factory.

The manager is configured in the security mode.quarantineOnCommonJoinKey

When a mote attempts to join with the quarantine key, it is placed in quarantine, and a new event notification

 is generated. This has the same fields as the existing notification.netMoteJoinQuarantine netMoteJoin

The mote is advanced to a new state, equivalent to the state.Quarantine Connected

The GW uses the API to change to a unique (or common non-quarantine) key on the mote andexchangeMoteJoinKey

add the mote to the ACL. The ACL is changed only after the mote has responded to the reliable command. See note

below.

The GW uses the new API to instruct the manager to finish the join process.promoteToOperational

SmartMesh WirelessHART User's Guide Page of 43 135

1.

2.

3.

1.

2.

The manager advances the mote to the state.operational

When a mote joins with a unique (or shared non-quarantine) key, if it is on the ACL it is allowed, otherwise it is denied.

If a mote that is on the ACL attempts to join with the quarantine key, it is denied.

Note: In rare cases, the mote can receive the join key change, but the manager does not receive its reply – this will result in

the mote being reset, and subsequent join attempts will be rejected due to the mote using the wrong key.

Updating a Mote's Join Key

The command is used to update both the manager's ACL and the join key stored on a mote. The exchangeMoteJoinKey

 command sends a command to the mote to set the new join key. When the Manager receives aexchangeMoteJoinKey

successful response from the mote, it updates the ACL entry for that mote.

The join key is a symmetric encryption key that is used by the manager and motes to encrypt and decrypt the join messages

that they exchange when the mote is attempting to join the network. If the ACL does not contain an entry with this MAC

address, the manager creates a new entry. When the exchange is completed, a event is generated. The join keysysCmdFinish

is exchanged without loss of data, and the mote does not need to be reset.

The time required to complete the command and issue a notification may vary depending on the size sysCmdFinish

and type of the network. During this period no additional commands may be issued.exchangeMoteJoinKey

Note that mote whose join key you wish to change must be in the Operational state when the commandexchangeMoteJoinKey

is issued in order to receive the new join key. For best results, use the following procedure:

Before exchanging the join key, first determine if the mote is operational by using the command to retrievegetConfig

the state of all motes in the network. If the mote is non-operational, wait for it to rejoin the network. If it does not

rejoin within an hour, troubleshoot the problem (for example, check the mote batteries).

When the mote is operational, issue the command.exchangeMoteJoinKey

When the event is received, reissue the command to determine if the mote is still operational.sysCmdFinish getConfig

Do one of the following depending on the outcome:

If the mote is operational, it has received the new join key and no further action is needed.

If the mote is non-operational, wait up to an hour to see if it can rejoin the network. If it does not rejoin,

manually update the manager's ACL with the old join key and wait for the mote to rejoin. Then repeat steps 1-3

with the new join key.

SmartMesh WirelessHART User's Guide Page of 44 135

1.

2.

3.

4.

5.

6.

7.

4.7.2 Limiting the Maximum Number of Motes

The parameter in the element defines the maximum number of motes expected in the network. ThismaxMotes Network

parameter can be used to prevent additional motes from joining the network. The manager keeps track of all motes that have

joined the network since the last restart of the manager software. Once the limit is reached, no additional motes aremaxMotes

allowed to join the network. If a mote joined the network, then was removed, it is still included in the number of motes count

unless it is explicitly deleted with the command.deleteConfig

The Access Point (AP) mote is counted in the total number of motes, so to allow motes to join the network, n

 must be set to .maxMotes n+1

4.8 Over-the-Air-Programming

4.8.1 Background

WirelessHART motes can have their firmware updated remotely via Over-the-Air-Programming (OTAP). This process can be

initiated in a number of ways (via Manager CLI, API, or via the Admin Toolset Utility) but in general consists of the following

steps:

Updated firmware is provided by Linear in the form of an file for DN2510-based devices, or an file.otap .otap2

for LTC5800-based devices (requires Manager version >= 4.1).

The software is uploaded to the Manager, and a command is invoked to start the OTAP process.

The manager performs a handshake with all motes to determine which motes can accept this update (the receive list),

and prepares them for update.

The OTAP file is divided into blocks and the Manager sends it to all devices - only devices on the receive list will do

anything with the file.

The Manager queries all motes on the receive list to verify that the image was received and is valid. Missed blocks are

repeated until all eligible motes have received the file.

The Manager sends the commit message to all motes that received the file. This will cause them to reprogram their

flash with the new firmware.

Motes are reset and rejoin the network using the new firmware.

In some cases, the OEM may not wish to allow mote updates without explicit application authorization. The

setNVParameter<OTAPlockout> mote API can be used to enable/disable a mote participating in OTAP updates. By default, the

mote accepts OTAP upgrades.

SmartMesh WirelessHART User's Guide Page of 45 135

1.

1.

2.

2.

1.

2.

3.

1.

4.

1.

5.

1.

OTAP is a slow process - this is so that mote average current isn't markedly increased by the additional traffic and flash

writing. It will typically take 5+ hours to complete an upgrade. Networks that are larger and less dense (100's of nodes) and

those with poorer path stability (< 80%) can increase the time by more than 2x.

4.8.2 OTAP through a Serial Port

To OTAP through a serial port:

Use a SCP (e.g. WinSCP) application on the PC to copy the OTAP files to the manager:

OTAP files go in the . You will need to create this directory if it does not/opt/dust-manager/otap

already exist.

Place both AP and Mote this directory. The OTAP function will recognize via the headers which file is which.

Start the OTAP process

Log into the manager CLI (nwconsole). Login directions can be found in the SmartMesh WirelessHART

.Manager CLI Guide

Enter

otap start -n 25

This will start OTAP with 25 rounds of retries. Retries are necessary since typically a small number of OTAP

packets (which are sent best effort) will not reach all motes in a single round.

Periodically check to see if OTAP has completed:

otap status

If all passed and all motes return "COMMIT":

Reset the AP

exec reset mote 1

If OTAP does not successfully compete:

Cancel and consult the troubleshooting section

otap stop

4.8.3 OTAP Using Admin Toolset

See the for details on performing software updates through Admin Toolset.SmartMesh WirelessHART Tools Guide

http://www.linear.com/docs/41889
http://www.linear.com/docs/41889
http://www.linear.com/docs/42454
http://ltspice.linear.com/dust/SmartMesh%20WirelessHART%20Tools%20Guide.pdf

SmartMesh WirelessHART User's Guide Page of 46 135

4.8.4 OTAP via Manager API

Once the .otap file has been placed in the /root/otap directory (see above), OTAP can be initiated using the startOtap

 command on the XML or serial manager APIs.<numRetries>

OTAP can be canceled any time before devices are sent the commit message using the command on the XML orcancelOTAP

serial manager APIs. If it is too late to cancel, an error (-561) will be returned on the XML API only - there is no feedback for

canceling OTAP on the serial API.

Details about the OTAP process in progress can be found in the schema element of the XML API.config/Network/OtapStatus

4.8.5 Troubleshooting an Unsuccessful OTAP

Because best effort is used, in rare instances of poor path stability 25 rounds of retries is not sufficient to OTAP all

motes. If OTAP fails, try increasing the retry count.

In mixed networks (Some Eterna-based motes, some DN2510-based motes), each type of device must OTAP'd

separately.

4.9 Restoring Manager Factory Default Settings

Use the following procedure if you need to restore the factory default settings to the manager.

The following factory default settings are restored:

IP address

PPP settings

Serial port settings

User name and password

Wireless network and mote configuration settings

Wireless network ID and common join key

Access control list (cleared)

Log files (cleared)

Mote list (cleared)

Using the restore button (LTP5903CEN-WHR):

Press and hold the restore button (labeled "Mode button while you press and release the (button.") Reset Power)

Continue holding the Mode button down for another 20 seconds, and then release. Both of these buttons are recessed,

so you will need a tool such as a large paper clip to press them.

SmartMesh WirelessHART User's Guide Page of 47 135

From the Linux Prompt (applies to LTP5903-WHR and LTP5903CEN-WHR):

From the Linux command line (logged in as user), execute this command:dust

sudo /usr/bin/restore-factory-conf

From the Admin Toolset web interface:

Go to and click on the button.Maintenance -> Commands -> Restore Factory Configuration Restore

SmartMesh WirelessHART User's Guide Page of 48 135

4.10 Channel Blacklisting

Although the network may operate on as few as five channels, it is recommended that the network run on as many

channels as possible for greater resiliency and more overall bandwidth.

The default behavior for SmartMesh Networks is to blacklist only the sixteenth channel (2480 MHz) to comply with

requirements in the United States (as regulated by FCC) and Canada (as regulated by IC). An odd number of channels must be

blacklisted, but you are free to use the command to choose which ones. You are responsible for ensuring that thesetConfig

allowed frequencies conform with local RF regulations.

The following channel frequencies may be specified:

2405, 2410, 2415, 2420, 2425, 2430, 2435, 2440, 2445, 2450, 2455, 2460, 2465, 2470, 2475, 2480

Channel 0 (2405 MHz) corresponds to IEEE channel 11, and Channel 15 (2480 MHz) corresponds to IEEE channel 26.

Note that Dust modules (including the AP) are certified as Frequency Hopping devices - if you operate any device in

the network at above +10 dBm EIRP, you may not be able to use blacklisting in some jurisdictions.

Where blacklisting is permitted, the number of blacklisted channels must be an odd number. An error is generated

when the number of blacklisted channels is set to an even number. Starting with Manager version 4.1.3, if more

than 9 channels remain, the network will operate in EN 300 328 rev. 1.8.1 compliant mode. If 5 or 7 channels

remain, the network will not be EN 300 328 compliant.

SmartMesh WirelessHART User's Guide Page of 49 135

4.11 INI Files

Many aspects of manager (aka) low-level behavior can be configured through the following set of files:controller .ini

4.11.1 system.ini

$SMARTMESH_HOME/conf/config/system.ini

The file contains settings that are specific to the configuration of particular system (box). These settings aresystem.ini

designed to be changed by system administrators at install/configuration time.

4.11.2 platform.ini

$SMARTMESH_HOME/conf/config/platform.ini

The file contains settings that are specific to platform on which the manager runs. These settings areplatform.ini

intended to be modified by Dust or the OEM.

4.11.3 dcc.ini

$SMARTMESH_HOME/conf/config/dcc.ini

The file includes internal manager settings that are morally not customer-facing. This file does not exist in a defaultdcc.ini

installation. It can be created by the user in order to override specific variables.dust

4.11.4 Modifying ini variables

Use the script to modify ini variables:set-conf-param

set-conf-param <file> <parameter> [value]

This script only examines the existing configuration file. It does not know about default values compiled into the software.

Therefore, if a file does not exist or a variable is not present in the configuration file, the script will not return a value.

For example:

dust@manager$ set-conf-param $SMARTMESH_HOME/conf/config/dcc.ini APD_APM_MAX_NUM_TRIES = 5

SmartMesh WirelessHART User's Guide Page of 50 135

4.11.5 Default dcc.ini

The file does not exist by default. The parameters contained in the file modify the way thedcc.ini dcc.ini

manager builds, maintains, and optimizes the network. Most settings have not been extensively tested if they have

been tested at all. Changing can result in unpredictable behavior, or a network that does not function.dcc.ini

Please contact Applications Engineering support before making changes.dcc.ini

###

File format version

version = 1.0

###

Duration of fast advertisement after new mote joins the network

Range:

ADV_JOIN_MOTE_TIME = 60:0

###

Duration of fast advertisement following a lost mote event.

Range:

ADV_LOST_MOTE_TIME = 60:0

###

Min duration of fast advertisement (for manual use)

Range:

ADV_MIN_TIME = 5:0

###

Local APD: allow APM hardware reset

Range: 0-1

APD_ALLOW_APM_RESET = true

###

Local APD: maximum number of packet tries to APM

Range: 2-30

APD_APM_MAX_NUM_TRIES = 3

###

Local APD: maximum queue size to APM

Range: 1-50

APD_APM_MAX_QUEUE_SIZE = 32

###

Local APD: packet retry timeout to APM

Range:

APD_APM_RETRY_TIMEOUT = 0:1

###

Local APD: maximum number of packet tries to dcc

Range: 2-30

APD_CTRL_MAX_TX_TRIES = 3

###

Controller - APD: maximum number of NAK from APD

Range: 2-30

APD_CTRL_MAX_NUM_NAK = 10

###

SmartMesh WirelessHART User's Guide Page of 51 135

Local APD: apd maximum queue size (to dcc)

Range: 1-50

APD_CTRL_QUEUE_SIZE = 5

###

Local APD: packet retry timeout (to dcc)

Range:

APD_CTRL_PKT_RETRY_TOUT = 0:1

###

Minimum age in seconds of control session before it can be replaced by a new session

Range: 1-31536000

API_CTL_REPLACEMENT_AGE = 600

###

Local APD: CTS poll-time

Range:

APD_APM_CTS_POLL_TIME = 0:0.002

###

Maximum number of cli sessions allowed

Range: 1-10

API_MAX_CLI_SESSIONS = 4

###

Maximum number of control sessions allowed

Range: 1-100

API_MAX_CTL_SESSIONS = 100

###

Maximum number of datalog sessions allowed

Range: 1-10

API_MAX_DATALOG_SESSIONS = 5

###

Maximum notification queue length

Range: 20-1000

API_MAX_NOTIF_QUEUE_LENGTH = 400

###

Maximum notification sessions allowed

Range: 1-20

API_MAX_NOTIF_SESSIONS = 5

###

Maximum time in seconds allowed to write a notification to an XML-RPC client before forcing

disconnect

Range: 1-60

API_MAX_NOTIF_WRITE_TIMEOUT = 10

###

Maximum number of events returned in XML-RPC call to get all events

Range: 1-5000

API_MAX_REPORTED_EVENTS = 1000

###

Maximum serial api sessions allowed

Range: 1-10

API_MAX_SERIAL_SESSIONS = 1

###

Maximum number of API/CLI users allowed in <config><Users/></config>

Range: 1-50

API_MAX_USERS = 20

###

SmartMesh WirelessHART User's Guide Page of 52 135

Maximum webproxy sessions allowed

Range: 1-10

API_MAX_WEBPROXY_SESSIONS = 5

###

Number of calls to calculate XML-RPC rate limit

Range: 1-1000

API_XMLRPC_LIMIT_NUM_CALLS = 10

###

Time period to calculate XML-RPC rate limit

Range:

API_XMLRPC_LIMIT_TIMEPERIOD = 0:1

###

Timeout (in seconds) before reporting an error when making RPC call to DCC

Range:

API_WATCHDOG_RPC_TIMEOUT = 5

###

Maximum XML-RPC result length for a non-chunked response

Range: 100-100000

API_XMLRPC_TRANSMIT_LENGTH = 50000

###

Time to delay flushing config file changes to flash

Range:

CONFIG_UPDATE_DELAY = 0:5

###

Maximum time to delay flushing config file updates to flash

Range:

CONFIG_UPDATE_TIMEOUT = 1:0

###

Max number of user(VGW) packets pending for downstream

Range: 10-500

IOQUEUE_MAX_PEND_USER_CMDS = 100

###

Max number of controller packets in internal output queue

Range: 1-100

IOQUEUE_MAX_CTRL_CMDS = 45

###

Max number of user packets in internal output queue

Range: 1-100

IOQUEUE_MAX_USR_CMDS = 45

###

Refill threshold for controller packets in internal output queue

Range: 0-100

IOQUEUE_MIN_CTRL_CMDS = 44

###

Refill threshold for users packets in internal output queue

Range: 0-100

IOQUEUE_MIN_USR_CMDS = 30

###

To calculate ratio of controller/user packets for downstream output

Range: 1-10

IOQUEUE_RATIO_CTRL_CMDS = 3

###

To calculate ratio of controller/user packets for downstream output

SmartMesh WirelessHART User's Guide Page of 53 135

Range: 1-10

IOQUEUE_RATIO_USER_CMDS = 1

###

Input q threshold for slowing down internal processing. 0 = disabled

Range: 0-2000

IOQUEUE_SLOWDOWN_LOP_QSIZE = 50

###

Sleep(x) argument for slowing down at IOQUEUE_SLOWDOWN_LOP_QSIZE

Range:

IOQUEUE_SLOWDOWN_LOP_SLEEPTM = 0:0.05

###

Number of motes to change mote discovery timeout. 0 - use fix timeout

Range: 0-512

NET_DSCV_RATE_MOTE_THRESH = 100

###

base discovery timeout (number of oupstream frames)

Range: 1-512

NET_DSCV_RATE_MOTE_TIME = 100

###

Controller works up to this long on decommissioning mote

Range:

NET_DECOM_MAX_TOUT = 10:0

###

AP link feedback timeout (in Fr#1)

Range: 1-50

NET_DOWNSTR_FEEDBACK_TOUT = 7

###

Max number downstream (FR#1) congestions

Range: 1-100

NET_DOWNSTR_MAX_CONG = 1

###

Max number of packets to send to APM per downstream pipe link

Range: 0-64

NET_DOWNSTR_PIPE_PK_PER_LINK = 3

###

Max number of packets to send to APM per downstream multicast link

Range: 0-64

NET_DOWNSTR_PK_PER_LINK = 1

###

Timer sent to mote: Keep Alive Timer

Range:

NET_MOTE_TMR_KA = 0:30

###

Timer sent to mote: Path Alarm Timeout

Range:

NET_MOTE_TMR_PATHALARM = 0:240

###

Mote advertisement timer in steady state. 0:0 - leave same as in building state

Range:

NET_MOTE_TMR_STEADY_ADV_RATE = 0:20

###

Enable/disable wireless security -- must be in sync with mote settings

Range:

SmartMesh WirelessHART User's Guide Page of 54 135

NET_SEC_USE_ENCRYPTION = true

###

Reject joins with bad join counter

Range:

NET_SEC_USE_STRICT_JOIN_COUNT = true

###

Duration of time that source route alarm penalty is applied to bad path

Range: 0-1000

NET_SRC_RT_ALARM_PENALTY_TOUT = 60:0

###

Penalty added to failed path on source route alarm

Range: 0-65535

NET_SRC_RT_ALARM_PENALTY = 10.0

###

Source route penalty for each descendant

Range: 0-65535

NET_SRC_RT_DESCEND_PENALTY = 0.1

###

Source route penalty for mote used in primary route

Range: 0-65535

NET_SRC_RT_PENALTY = 10.0

###

Max UTC drift

Range:

NET_TIME_MAX_UTC_DRIFT = 0:0.1

###

Rate at which controller sends Time Request to APM

Range:

NET_TIME_REQ_INTERVAL = 1:0

###

Time that the master waits for AP to join before it fails over

Range:

RDNCY_LOST_AP_TOUT = 1:0

###

Controller waits this long AP Keep Alive Timeout.

Range:

NET_TOUT_KEEPALIVE_AP = 0:6

###

Max uninterruptable time for long operation

Range:

NET_TOUT_MAX_CALC_TIME = 0:0.1

###

Timeout for sending repeated resets to same mote

Range:

NET_TOUT_RESET = 1:0

###

Max time for mote state \'connected\'.

Range:

NET_TOUT_TO_LIVE = 15:0

###

Force BW recalculation before each optimization step

Range:

OPT_BWRECALC = false

SmartMesh WirelessHART User's Guide Page of 55 135

###

Penalty for motes not connected to Fr0

Range: 0-100

OPT_FRAME_DN_FR0_PENALTY = 10.0

###

Max penalty for path quality. Downstream frame (Fr#1)

Range: 0-100

OPT_FRAME_DN_PATHQ_PENALTY = 2.0

###

Max penalty for path quality. Upstream frame (Fr#0)

Range: 0-100

OPT_FRAME_UP_PATHQ_PENALTY = 4.0

###

MAX number of mote in one optimization ADD-step (0 - unlimited)

Range: 0-100

OPT_MOTES_PER_STEP = 0

###

Coefficient to fix negative BW (FreeBW < 0 and FreeBW < -CurBW / K). 0 - only FreeBW < 0

Range: 0-10

OPT_NEG_BW_K = 2

###

Max time for negative free BW.

Range:

OPT_NEG_BW_TIME_THRESH = 60:0

###

Max penalty for number of links

Range: 0-100

OPT_NUMLINKS_PENALTY = 0.4

###

Delete path after PathDown alarm received

Range:

OPT_PATH_ALARM_DELETE = true

###

Min time between two diferent path-down alarms

Range:

OPT_PATH_ALARM_IGNORE_TIME = 5:0

###

Timeout for deleting unused, old paths from topology

Range:

OPT_PATH_EXPIRE_TIME = 24:0:0

###

Delete path with qualty less than given. 0 - doesn't delete path

Range: 0-1

OPT_PATH_QUALITYTHRESHOLD_DELETE = 0.1

###

Min path quality for Pipe

Range: 0-1

OPT_PIPE_PATHQUALITY = 0.3

###

Path quality if RSSI >= threshold

Range: 0-1

OPT_RSSI_MAX_PATH_QUALITY = 0.75

###

SmartMesh WirelessHART User's Guide Page of 56 135

Path quality if RSSI < threshold

Range: 0-1

OPT_RSSI_MIN_PATH_QUALITY = 0.3

###

RSSI threshold, used to determine path quality

Range: -100-0

OPT_RSSI_THRESH = -80

###

Optimization threshold between good and bad parents (0 optimization is off)

Range: 0-1000

OPT_SCORE_THRESHOLD = 0.5

###

Timeout before changing state to Steady State

Range:

OPT_STARTTIME = 30:0

###

Time between optimization steps

Range:

OPT_TIMEOUT = 60:0

###

Min delay between data blocks (bcast) ms

Range: 0-1000000

OTAP_BLK_DELAY_MIN_BC = 8000

###

Min delay between data blocks (ucast) ms

Range: 0-10000

OTAP_BLK_DELAY_MIN_UC = 100

###

Data block size. MUST divisible by 4

Range: 1-76

OTAP_BLK_SIZE = 76

###

AP redundant coverage multiplier

Range: 0-1

RDNCY_AP_COV_MULTIPLIER = 0.7

###

AP redundant coverage update interval

Range: 0-60

RDNCY_AP_COV_UPDATE_TIME = 5:0

###

Controller to Controller protocol. Max size of input queue

Range: 10-500

RDNCY_C2C_MAX_INPUTQ_SIZE = 100

###

Controller to Controller protocol. Max size of output queue

Range: 10-1000

RDNCY_C2C_MAX_OUTPUTQ_SIZE = 30

###

Reliable transport timeout for AP

Range:

RELIABLE_AP_TOUT = 0:2

###

Number of retries for reliable broadcast commands

SmartMesh WirelessHART User's Guide Page of 57 135

Range: 1-60

RELIABLE_BCAST_NUM_RETR = 10

###

Range for reliable broadcast reply. N * F_UP

Range: 1-100

RELIABLE_BCAST_REPL_RANGE = 6

###

Timeout for reliable broadcast command. N * (F_UP+F_DN)

Range: 1-100

RELIABLE_BCAST_TOUT = 14

###

Timeout for first packet (SKActivate). x * F_UP + N * F_DN)

Range: 1-100

RELIABLE_FRAME_DN_SK_ACK_TOUT = 15

###

Max timeout for processing SKJoin request. x * F_UP + N * F_DN)

Range: 1-100

RELIABLE_FRAME_DN_SK_TOUT = 10

###

Timeout for first packet (SKActivate). N * F_UP + x * F_DN

Range: 1-100

RELIABLE_FRAME_UP_SK_ACK_TOUT = 10

###

Max timeout for processing SKJoin request. N * F_UP + x * F_DN)

Range: 1-100

RELIABLE_FRAME_UP_SK_TOUT = 10

###

Max timeout for reliable unicast command. N * (F_UP + F_DN)

Range: 1-100

RELIABLE_MAX_TOUT = 10

###

Number of repeats for manager reliable unicast command. Use only if RELIABLE_MGR_RETR_INFINITE ==

false

Range: 1-25

RELIABLE_MGR_UCAST_NUM_RETR = 5

###

Continuously retry commands sent on manager session. Overrides RELIABLE_MGR_UCAST_NUM_RETR

Range:

RELIABLE_MGR_RETR_INFINITE = false

###

Min timeout for reliable unicast command N * (F_UP + F_DN)

Range: 0-100

RELIABLE_MIN_TOUT = 0.5

###

Coefficient 'A' for round trip time calculation

Range: 0-1

RELIABLE_RTT_CALC_A = 0.9

###

Coefficient 'B' (int) for round trip time calculation

Range: 0-5

RELIABLE_RTT_CALC_B = 2

###

Number of repeats for VGW reliable unicast command. Use only if RELIABLE_VGW_RETR_INFINITE ==

SmartMesh WirelessHART User's Guide Page of 58 135

false

Range: 1-25

RELIABLE_VGW_UCAST_NUM_RETR = 10

###

Continuously retry commands sent on vgw session. Overrides RELIABLE_VGW_UCAST_NUM_RETR

Range:

RELIABLE_VGW_RETR_INFINITE = true

###

Number of daily statistics intervals to store

Range: 1-60

STATS_LONG_INTERVAL_NUM = 7

###

Number of short intervals for optimization path quality

Range: 1-200

STATS_OPT_WINDOW = 4

###

Seconds in short statistics interval

Range: 60-7200

STATS_SHORT_INTERVAL_LEN = 900

###

Number of short statistics intervals to store

Range: 2-200

STATS_SHORT_INTERVAL_NUM = 96

###

Bandwidth-check process timeout

Range:

TOP_BW_CHECK_TOUT = 1:0

###

Number of listener timeslots for advertisement frame (Fr#4) for AP. Building time

Range: 1-20

TOP_FRAME_ADV_APLST_BLD = 6

###

Number of listener timeslots for advertisement frame (Fr#4) for AP. Steady state

Range: 1-20

TOP_FRAME_ADV_APLST_STEADY = 2

###

Number of advertisement frame channels (Fr#4)

Range: 1-4

TOP_FRAME_ADV_NUMCH = 1

###

Number of parents for downstream frame (Fr#1)

Range: 1-10

TOP_FRAME_DN_PARENTS = 2

###

Range for selecting next link (Fr#1)

Range: 1-100

TOP_FRAME_DN_TS_RANGE = 40

###

Max number of hops in pipe

Range: 1-7

TOP_FRAME_PIPE_NUMHOPS = 7

###

Check power information prior to building pipe

SmartMesh WirelessHART User's Guide Page of 59 135

Range:

TOP_FRAME_PIPE_SAFETYCHECK = true

###

Minimum size of pipe frame (Fr#2,3)

Range: 1-4096

TOP_FRAME_PIPE_SIZE = 16

###

Number of links for upstream frame(Fr#0)

Range: 1-10

TOP_FRAME_UP_LINKS = 4

###

Number of parents for upstream frame (Fr#0)

Range: 1-10

TOP_FRAME_UP_PARENTS = 2

###

Max number of parents for upstream frame (Fr#0). 0 - unlimited

Range: 0-100

TOP_FRAME_UP_PARENTS_MAX = 8

###

Oversubscribe coefficient for link (1.0 no oversubscribing

Range: 1-100

TOP_LINK_OVRSUBSCR = 3.0

###

Max AP bandwidth

Range: 1-100

TOP_MAX_AP_BW = 72.0

###

Default value for max number of mote's links. Overwritten when reported by mote

Range: 10-1000

TOP_MAX_LINKS = 10

###

MAX number of motes in network

Range: 10-NUMBACTMOTE_MAX

TOP_MAX_MOTES = 501

###

Default value for maximum number of mote's neighbors

Range: 4-1000

TOP_MAX_NEIGHBORS = 32

###

Number of AP multicast links (Fr#1)

Range: 0-64

TOP_NUM_DN_MCAST_LINKS = 8

###

Time to resolve service request

Range:

TOP_SERVICE_REQ_TOUT = 2:0

###

Min path quality for good neigbor

Range: 0-1

TOP_GOODNBR_QUALITY = 0.6

###

Max number upstream link for add jitter to select timeslot

Range: 0-100

SmartMesh WirelessHART User's Guide Page of 60 135

LINKJITTER_NUMLINKTH = 4

4.11.6 Default platform.ini

This file maps access point GPIO pins to Linux host system GPIO, tells where logs are kept, and what serial port is used to

communicate with the Access Point.

###

File format version

version = 1.0

###

Reset pin

String Length Range: 0-128

GPIO_RESET = /dev/gpioPB17

###

Time pin

String Length Range: 0-128

GPIO_TIME = /dev/gpioPB21

###

Serial port clear-to-send pin

String Length Range: 0-128

GPIO_SP_CTS = /dev/gpioPC12

###

Mote clear-to-send pin

String Length Range: 0-128

GPIO_MT_CTS = /dev/gpioPB19

###

Serial port ready-to-send pin

String Length Range: 0-128

GPIO_SP_RTS = /dev/gpioPB16

###

Mote ready-to-send pin

String Length Range: 0-128

GPIO_MT_RTS = /dev/gpioPB18

###

Access point GPIO, unused

String Length Range: 0-128

GPIO_AP_GPIO = /dev/gpioPB30

###

Access point flash disconnect (unused)

String Length Range: 0-128

GPIO_AP_FL_DIS = /dev/gpioPB31

###

Access point power

String Length Range: 0-128

GPIO_AP_POWER = /dev/gpioPC6

###

Join LED

SmartMesh WirelessHART User's Guide Page of 61 135

String Length Range: 0-128

GPIO_JOIN = /dev/gpioPC1

###

Subscription LED

String Length Range: 0-128

GPIO_SUBSCRIPTION = /dev/gpioPC0

###

Serial port transmit

String Length Range: 0-128

GPIO_SP_TX = /dev/gpioPB12

###

Serial port receive

String Length Range: 0-128

GPIO_SP_RX = /dev/gpioPB13

###

Location of dust log files (make sure to end with '/')

String Length Range: 0-128

PATH_LOG_LOCATION = /opt/dust-manager/log/

###

Local APD serial port

String Length Range: 0-128

TTY_LOC_APD = /dev/ttyS2

4.11.7 Default system.ini

This file configures log sizes and a number of ports and addresses for operation, diagnostic functions, and redundancy.

For those migrating from earlier (<4.0) versions of the SmartMesh WirelessHART Manager, note that some default

values may have changed.

Changing ports here (e.g. moving the XML-RPC port, PORT_CTRL_TCP, from the default 4445) may render your

manager inoperable if you don't also configure the firewall (via firewall.conf) to allow the same ports.

###

File format version

version = 1.0

###

If true, manager runs in embedded mode (security keys are exposed in APIs

Range: true, false

MODE_EMBEDDED = FALSE

###

Maximum size of dcc.log file (in bytes).

Range: 1000-1000000

LOGS_DCC_LOG_SIZE = 400000

SmartMesh WirelessHART User's Guide Page of 62 135

###

Maximum size of event.log file (in bytes).

Range: 1200-1200000

LOGS_EVENT_LOG_SIZE = 480000

###

IP address of remote-log server

String Length Range: 0-100

LOGS_RLOG_IPADDR =

###

Port number of remote-log server

Range: 1-65535

PORT_RLOG = 4545

###

Port for APD interface

Range: 1024-65535

PORT_CONTROL_APD = 60000

###

Input port for redundancy link

Range: 1024-49000

PORT_CONTROL_C2C_IN = 5000

###

Output port for redundancy link

Range: 1024-49000

PORT_CONTROL_C2C_OUT = 5000

###

Accept local connections only (c2c, xml-rpc, apd)

Range: true, false

PORT_CONTROL_USE_LOCAL = false

###

Port number for xml-rpc control channel

Range: 1024-65535

PORT_CTRL_TCP = 4445

###

Port number for xml-rpc notification channel

Range: 1024-65535

PORT_NOTIF_TCP = 24112

###

Use SSL for xml-rpc connection

Range: true, false

USE_SSL_PORTS = false

###

SSL. Port number for xml-rpc control channel

Range: 1024-65535

PORT_CTRL_SSL = 4446

###

SSL. Port number for xml-rpc notification channel

Range: 1024-65535

PORT_NOTIF_SSL = 24113

###

APD CLI interface port

Range: 1024-65535

PORT_LOC_APD_CLI = 55551

###

SmartMesh WirelessHART User's Guide Page of 63 135

APD local bind port for connection with DCC

Range: 1024-65535

PORT_LOC_APD_CONTROL = 60002

###

Port number for logging daemon

Range: 1024-65535

PORT_LOGGER = 21333

###

Port number for nwconsole server

Range: 1024-65535

PORT_NWCONSOLE = 49004

###

Port number for watchdog server

Range: 1024-65535

PORT_WATCHDOG = 49007

###

Redundancy link: rate of KA messages (when there's no traffic)

Range: N/A

RDNCY_C2C_KA_TIMEOUT = 0:1

###

Redundancy link: max number of nacks before failure is declared

Range: 1-30

RDNCY_C2C_MAX_NUM_NACKS = 10

###

Redundancy link: packet tx failure timeout

Range: N/A

RDNCY_C2C_TX_FAILURE_TIMEOUT = 0:0.6

###

Redundancy link: packet retry timeout upon receiving nack

Range: N/A

RDNCY_C2C_NACK_RETRY_TIMEOUT = 0:0.1

###

If true, start controller in standalone mode.

Range: true, false

RDNCY_STANDALONE_MODE = true

###

Peer controller's IP Address

String Length Range: 7-15

RDNCY_PEER_IP_ADDRESS = 127.0.0.1

###

Time to wait for promotion after losing connection with Master. 0:0 - promote immediately after

disconnect

Range: N/A

RDNCY_PROMO_TIME = 1:0

###

Path for API notification socket

String Length Range: 1-128

API_NOTIFICATION_PATH = notif.sock

4.12 Datalog Utility

SmartMesh WirelessHART User's Guide Page of 64 135

4.12.1 Overview

The datalog utility is a component of the SmartMesh WirelessHART Manager that provides a simple mechanism for capturing,

storing, and reporting the contents of data packets received from the mote network. Datalog commands can be run as the

 user from the Manager's Linux command line.dust

Testing of a variety of SD cards from several manufacturers has shown that some SD cards will fail to properly

respond during the card identification mode, defined in "SD Specifications, Part 1, Physical Layer Simplified

Specification, Version 4.10, January 22, 2013" following power on of the LTP5903. As a result the SD Card is not

recognized, and an LTP5903 system recovering from a loss of power cannot guarantee that the datalog utility will

be able to start up automatically. The issue appears to result in the SD Card entering an invalid state that it cannot

recover from without the card being removed from the LTP5903's SD Card socket. In addition, cards that fail to

negotiate the card identification sequence do not fail consistently, so determining exactly which cards do or do not

suffer from this issue is not tractable. During testing, several cards never failed, but as we are not able to identify

the root cause and then be able to define a definitive pass / fail test case, Linear Technology cannot guarantee that

any card will operate correctly through a power on sequence. Testing has never discovered a card that would not

function correctly when inserted after the LTP5903 has completed its boot sequence.

4.12.2 Using Datalog

Starting a Capture

Before starting a capture, make sure an SD card is inserted into the Manager's SD/MMC port. The Manager automatically

mounts the filesystem on an SD card when the card is inserted.

To start a capture, from the Manager’s Linux command line, type:

datalog start <capture-id>

The capture id is an arbitrary identifier for the capture. The identifier is used in the name of the capture file and in the status

and stop commands to refer to a capture operation. There are several optional parameters:

 – indicates that packet timestamps should be included in the capture file.-t

 – indicates that the given file is associated with the capture and should not be deleted. The-h <header-file>

header file should be stored in the capture directory.

For example, the following command will start a capture with the id that includes timestamps and has anmycapture

associated file named in the capture directory.myheader.txt

SmartMesh WirelessHART User's Guide Page of 65 135

datalog start mycapture -t -h myheader.txt

For historical reasons, all files in the capture directory that are not associated with the new capture will be deleted when a

capture starts. To reiterate, if you forget to include the option, any existing header file will be deleted.-h <header>

Stopping a Capture

When a capture is stopped, a fixed-length trailer is appended to the file. For details, see the section.Datalog Output

To stop a capture, type:

datalog stop <capture-id>

After the capture is stopped, the SD card filesystem can be unmounted so that the SD card can be removed to transfer the

data to another computer.

The command cleanly unmounts the filesystem of the SD card to ensure the OS has written all pending data to theumount

SD card.

dust@manager:/media/card$ cd

dust@manager:~$ sudo umount /media/card

Normally, the command produces no output.umount

If an error message appears indicating that the card can not be unmounted because it is busy, then there may be a

capture process still running. The same error appears if a login shell has navigated to the SD card (/media/card

).umount: /media/card: device is busy.

(In some cases useful info about processes that use

the device is found by lsof(8) or fuser(1)

SmartMesh WirelessHART User's Guide Page of 66 135

Capture Status

To see the status of a capture, type:

datalog status <capture-id>

The parameter is optional. If no capture id is specified, the command will show the status of anycapture-id status

capture that is in-progress. The command shows:status

the capture id,

the full path of the capture file,

the name of the header file (if specified),

the time the capture was started, and

the size of the capture and the remaining storage available in the capture directory.

$ datalog status 101

Capture '101'

 Capture file: /media/card/capture.101

 Started: Thu Oct 25 11:55:30 2012

 Size: 0 kB (remaining: 15538848 kB)

File Transfer

Capture files can be downloaded from the Manager at any time using one of the file transfer protocols supported by SSH: SCP

or SFTP. These mechanisms can also be used to upload header files to the capture directory. If the capture file is downloaded

while the capture is in progress, the end of the file may contain an incomplete data record. At any given time, there will be at

most one incomplete record when the capture file is retrieved. The incomplete record will be completed when data is next

written to the capture file.

SmartMesh WirelessHART User's Guide Page of 67 135

Configuration

Datalog has several configuration parameters that are stored in a configuration file in

:/opt/dust-manager/conf/settings/datalog.conf

 – The directory for storing capture files and header files. This directory must be writable by the ‘dust’CAPTURE_DIR

user. If the directory does not exist, datalog will try to create it.

Defaults to /media/card

 – A prefix for the name of capture files. The name of the capture file will be CAPTURE_PREFIX

.<prefix>.<capture-id>

Defaults to capture

 – The device to use for captures. This is used for checking remaining memory available forCAPTURE_DEVICE

captures.

Defaults to /dev/mmcblk0p1

 – The filename for storing the process id file. For internal use only.PID_FILE

Defaults to /opt/dust-manager/var/dust-datalog.pid

4.12.3 Datalog Output

As the data logging operation runs, it captures the data received from motes and continuously appends to a capture file. The

capture file is named , where ID is the capture identifier from the start operation. The capture file consists of acapture.ID

sequence of data records, and is terminated with a trailer when the data logging operation is stopped. Each data record is

variable sized, binary data captured from a single serial packet transmitted from a mote. The time field is optionally present

depending on whether the timestamp parameter was passed to the start command. The optional header file is not part of the

capture file; it is simply a file stored in the same capture directory. The contents of this header file are not parsed by the

datalog tool and may contain arbitrary data.

The time field present in data records and the trailer is in Unix time format: the number of seconds since midnight, Jan 1,

1970. All multi-byte numbers generated by the datalog tool (i.e., the length and time values) are stored in the capture file in

“little endian” format, with the least significant byte first. Any data in the payload of the serial data packet is stored as it is

received. The format of the data payload is opaque to the tool.datalog

Format of Data Records

A magic number at the front of the data packet is used as a tag to describe the contents of the record. The length field

contains the length in bytes of the remainder of the record, including the length field.

 indicates that no timestamp is present.0xD1

 indicates that the timestamp is present.0xD2

SmartMesh WirelessHART User's Guide Page of 68 135

Format of Trailer

When a capture is stopped (either by the command or by automatically closing due to size constraints), a fixed-lengthstop

trailer with the following information is appended to the capture file:

Magic number ()0xD0

Timestamp at which the capture was stopped

Capture status

The trailer allows the client to determine whether the capture was completed properly. A magic number is present so that a

correctly formed trailer can be detected.

The capture status indicates the reason for finalizing the capture file. The status is one of:

 = 0: OK. The capture was terminated by a client stop command.Status

 = 1: Size Error. The capture was stopped because of size constraints in the capture directory.Status

Note: the L field is 1 byte, which differs from 2-byte field in Data Records. This is done for historical backwardength Length

compatibility reasons.

Converting captured data to ASCII

The tool is used to convert capture files into a text format. In the text format, MAC addresses and datadatalogConvert

payloads are represented in hexadecimal; timestamps (if present) are represented as . The resulting fileMM/DD/YY HH:MM:SS

can be imported by programs that accept comma separated values, such as MS Excel. The converted files are much larger

than the standard capture files, so make sure there is plenty of space on the manager for the output before using this tool.

SmartMesh WirelessHART User's Guide Page of 69 135

Usage

From the Manager’s Linux command line:

datalogConvert /media/card/capture.101 /media/card/capture.101.csv

This command will take the file in and convert it to a comma-delimited text format which will be stored in capture.101

.capture.101.csv

4.12.4 How to Restart Datalog on System Reboot

Overview

This document describes how to modify the datalog script to restart automatically if the Manager reboots.

There are several components of this project to understand:

Detect an in-progress capture (and its id)

Prevent clearing the capture directory

Run a script on startup

The code presented in this document is presented for example only. It has not been tested.

Detect an in-progress capture

The simplest way to detect an in-progress capture is to look for a well-known file that is written (by the script)datalog

when the capture starts. The script must write to this file when a capture starts (at the end of the start action). The datalog

 script must check for this file in the resume action.datalog

Another aspect of detecting an in-progress capture is to ensure that the resumed capture is associated with the same capture

id.

Another aspect of detecting an in-progress capture is to ensure that the new capture file does not overwrite any previous

captures. The name of the new capture file should not be exactly the same as the previous capture.

Add a variable for the file name that indicates a capture is running

CAPTURE_RUNNING=.capture_id

SmartMesh WirelessHART User's Guide Page of 70 135

In the resume action, check whether the "capture in-progress" file exists

if [-f $CAPTURE_DIR/$CAPTURE_RUNNING]; then

 # The presence of this file indicates that we should resume the capture

 # Read the past capture id

 LAST_CAPTURE_ID=`cat $CAPTURE_DIR/$CAPTURE_RUNNING`

 # [Add Code] determine the new capture filename

 # [Add Code] perform similar operations to the start actions to initiate a capture

fi

At the end of the start code, write the capture id to the CAPTURE_RUNNING file

echo "$CAPTURE_ID" > $CAPTURE_DIR/$CAPTURE_RUNNING

Prevent deleting any previous captures

By default, the script clears the capture directory on startup. If we are resuming a capture, we do not want to deletedatalog

the previous capture logs. The easiest solution is to just remove the lines that clear the capture directory.

case "$action" in

 start)

 ...

 # clear out the capture directory before starting

 # [REMOVE] rm -f ${CAPTURE_DIR}/* 2>>/dev/null

 # [REMOVE] rm -f ${CAPTURE_DIR}/.* 2>>/dev/null

 ...

Given that the typical SD card capacity has increased, the user may consider not clearing the capture directory on each

capture start.

Startup scripts

System startup scripts are stored in and symlinked to the appropriate runlevels. This setup is accomplished/etc/init.d/

with the command line utility.update-rc.d

The startup script should have a command line argument that indicates whether the system is starting up or shutting down.

Here is a simple example of a startup script that calls as the user when the system boots.datalog resume dust

SmartMesh WirelessHART User's Guide Page of 71 135

#!/bin/sh

#

Run the datalog resume command on startup

DATALOG=/opt/dust-manager/bin/datalog

case "$1" in

 start)

 echo -n "Running datalog resume script... "

 su dust - $DATALOG resume

 echo "done."

 ;;

 stop)

 # nothing to do here

 :

 ;;

 *)

 echo "usage: /etc/init.d/datalog-resume {start|stop}"

 exit 1

 ;;

esac

exit 0

For the purposes of this project, it's better not to put too much intelligence into the startup script. Instead, the common

configuration (paths, file naming conventions, etc) can live in the script itself. So the main job of the startup scriptdatalog

is to call the script with an argument that tells it to try to resume a previous capture.datalog

The startup script for the persistent captures should run after the Manager software is started. We ensure this by running the

startup script last in the startup sequence (99).

root@manager# update-rc.d -f resume-datalog defaults 99 1

4.13 Configuring PPP on Serial 1

By default, the Manager is configured to allow Linux command line (CLI) login on the serial port labelled . It is alsoSerial 1

possible to configure to support PPP access. In this mode, is always expecting a connection from a PPPSerial 1 Serial 1

client.

4.13.1 Switching Serial Port Modes

The following commands will switch the mode of the port:Serial 1

SmartMesh WirelessHART User's Guide Page of 72 135

1.

2.

3.

4.

5.

dust@manager$ sudo config-login disable

Disabling login on ttyS1

INIT: Sending processes the TERM signal

dust@manager$ sudo config-ppp enable

Enabling PPP on /dev/ttyS1.

Loading ppp modules.

PPP generic driver version 2.4.2

PPP BSD Compression module registered

PPP Deflate Compression module registered

update-rc.d: /etc/init.d/ppp-modules exists during rc.d purge (continuing)

 Removing any system startup links for ppp-modules ...

 Adding system startup for /etc/init.d/ppp-modules.

4.13.2 PPP Configuration

The default PPP configuration expects a client to connect at 115200 baud, 8N1, with no flow control. When connected, the

default PPP configuration configures the Manager on IP address and the PPP client on IP address 192.168.101.10

.192.168.101.11

4.13.3 Linux Client Configuration

Linux distributions provide a PPP package that can interoperate with PPP running on the Manager.

Install the package on the Linux client.ppp

Connect the Linux client to the Manager's Serial 1 port with a serial cable.

Add the following configuration to where is the serial device name on the/etc/ppp/options.<port> <port>

Linux client, e.g. .ttyS1

noccp

deflate 15,15

bsdcomp 15,15

nocrtscts

115200

192.168.101.10:192.168.101.11

Run to connect to the Manager.pppd

$ sudo pppd /dev/<port>

To disconnect, kill the process.pppd

SmartMesh WirelessHART User's Guide Page of 73 135

4.13.4 Windows Client Configuration

The built-in Windows PPP connection expects an extra handshake from the PPP server. To inter-operate with Windows, the

PPP connection must be configured to expect a Windows client, use:

dust@manager$ sudo config-ppp enable-windows

On the Windows machine, open under the and create a . TheNetwork Connections Control Panel New Network Connection

following steps walk through the New Network Connection wizard.

SmartMesh WirelessHART User's Guide Page of 74 135

Select :Set up an advanced connection

SmartMesh WirelessHART User's Guide Page of 75 135

Select :Connect directly to another computer

SmartMesh WirelessHART User's Guide Page of 76 135

Select (because the Windows machine will act as the PPP client):Guest

SmartMesh WirelessHART User's Guide Page of 77 135

Enter a meaningful name for this connection. It is useful to add the serial port that this connection will be used on.

SmartMesh WirelessHART User's Guide Page of 78 135

Select the serial port over which the computer is connected to the Manager port.Serial 1

SmartMesh WirelessHART User's Guide Page of 79 135

Select to allow any user of this computer to use this PPP connection.Anyone's use

SmartMesh WirelessHART User's Guide Page of 80 135

Select to complete the wizard.Finish

SmartMesh WirelessHART User's Guide Page of 81 135

There are a couple of additional steps to configure the PPP connection properly.Right click on the PPP connection icon and

open the dialog.Properties

SmartMesh WirelessHART User's Guide Page of 82 135

Under the tab, select to configure the serial port properties. Make sure that the speed is set up 115200General Configure...

baud and hardware flow control is disabled.

SmartMesh WirelessHART User's Guide Page of 83 135

Under the tab, make sure is unchecked.Options Prompt for name and password, etc

SmartMesh WirelessHART User's Guide Page of 84 135

Under the tab, select and then select . In the Networking Internet Protocol (TCP/IP) Properties Internet Protocol (TCP/IP)

 dialog, select . In the dialog deselect Properties Advanced... Advanced TCP/IP Settings Use default gateway on remote

.network

Once the Windows PPP connection is set up, double click on the connection icon to start the connection.

SmartMesh WirelessHART User's Guide Page of 85 135

4.13.5 Assembling a 9-pin D-SUB Adapter for Serial 1

If you are connecting the interface on a LTP5903CEN-WHRmanager to a 9-pin D-SUB RS232 port on a PC or controlSerial 1

device, you need to use an RJ45 to 9-pin D-SUB RS232 adapter.

A crossover Ethernet cable is used to connect the interface to the adapter. The adapter in the following example is aSerial 1

female RJ45 to female 9-pin D-SUB. The arrows indicate how to match up the RJ45 and 9-pin D-SUB connector pins.

SmartMesh WirelessHART User's Guide Page of 86 135

1.

2.

Female RJ45 Connector

9-pin D-SUB Connector

RJ45 Pinout 9-pin D-SUB Pinout

Pin Signal Description Pin Signal Description

1 TX out of manager 3 TXD

2 RTS out of manager 7 RTS

3 RX into manager 2 RXC

4 GND 4 Not connected

5 GND 5 GND

6 CTS into manager 8 CTS

7 Not connected 7 RTS

8 GND 8 CTS

9 Not connected

Matching Up RJ45 and 9-pin D-SUB Connector Pins

4.14 Manager Redundancy

4.14.1 Overview

The SmartMesh WirelessHART Manager (>=4.1.0) includes hooks to support hot-failover redundancy via the mgrctlLinux-HA

script. The Linux-HA components themselves are not supplied with the manager.

When redundancy is enabled in the Manager:

When the Manager starts, it starts in slave mode and waits to be promoted to master. In a redundant system,

promotion is handled by the redundancy manager, an external process that manages monitoring and failover.

The Manager watchdog process will initiate a ''failover'' rather than restart if a critical failure occurs. The watchdog

notifies the external redundancy manager to initiate failover.

http://www.linux-ha.org/

SmartMesh WirelessHART User's Guide Page of 87 135

3. The master Manager listens for a connection from the slave Manager to exchange configuration and state. The slave

Manager tries to connect to its peer (master). Once connected, the slave keeps the connection open and receives

periodic updates from the Manager.

The redundant peers must be able to connect to each other over TCP.

4.14.2 Configuration

Certain configuration parameters must be changed from their default values to enable redundancy.

On each Manager, edit /opt/dust-manager/conf/config/system.ini:

###

If true, start controller in standalone mode.

Range: true, false

RDNCY_STANDALONE_MODE = false

###

Peer controller's IP Address

String Length Range: 7-15

RDNCY_PEER_IP_ADDRESS = <IP address of peer>

###

On both the master and slave, the RDNCY_PEER_IP_ADDRESS must point to the IP address of the other Manager.

After these configuration parameters are changed, the Manager must be restarted for the new parameters to take effect.

With RDNCY_STANDALONE_MODE set to false, the Manager starts in slave mode and waits for the redundancy manager (or

user) to promote the Manager to be the master.

sudo /etc/init.d/dust-manager start

sudo /etc/init.d/dust-manager switch

4.14.3 Advanced configuration

Additional configuration parameters can be adjusted for system-specific configuration.

/opt/dust-manager/conf/config/system.ini

SmartMesh WirelessHART User's Guide Page of 88 135

###

Input port for redundancy link

Range: 1024-49000

PORT_CONTROL_C2C_IN = 5000

It's possible to change the port on which the master listens for connections from a slave.

4.14.4 Firewall configuration

If the TCP port used for redundancy is changed, the firewall configuration in must be changed as well./etc/init.d/firewall

SmartMesh WirelessHART User's Guide Page of 89 135

5 The SmartMesh WirelessHART Mote

5.1 Introduction

SmartMesh WirelessHART Motes form the "body" of the network. The mote is responsible for:

Maintaining synchronization to the network

Forwarding data from descendants

Generating health reports to continually update the manager's picture of the network

Generating alarms to indicate failures, such as a lost path

Presenting user interfaces to a sensor application

The is a single-chip solution intended to be embedded in the customer's design. The and LTC5800-WHM LTP5901-WHM

 are modularly certified so they can be integrated without the need for radio certification. The LTP5902-WHM LTP5900-WHM

is a backwards-compatible 22-pin form factor module for using the in legacy designs.LTC5800-WHM

The following diagram illustrates the terminology used throughout this guide.

Device - Mote and OEM Microprocessor

5.1.1 Steps in a Mote Design

As with the manager, although the mote is busy with networking tasks, the sensor application has relatively few things it must

do:

Acknowledge the mote boot event

Configure any parameters needed prior to join (such as)joindutycyle

http://www.linear.com/product/LTC5800-WHM
http://www.linear.com/product/LTP5901-WHM
http://www.linear.com/product/LTP5902-WHM
http://www.linear.com/product/LTP5900-WHM
http://www.linear.com/product/LTC5800-WHM

SmartMesh WirelessHART User's Guide Page of 90 135

Use the API to cause a mote to being searching for a networkjoin

Monitor the mote state to see when it is ready to accept data

Request services in order to publish data

Send data and respond to application layer messages.

The covers other commands to configure the mote. The SmartMesh WirelessHART Mote API Guide SmartMesh

 covers using the human interface to observe mote activity.WirelessHART Mote CLI Guide

5.2 Mote State Machine

The following state machine describes the general behavior of a mote during its lifetime, and is provided for the user's

information. In general an application only needs to issue the join command to enter a network, and issue a small subset of

API commands to send data.

http://www.linear.com/docs/41893
http://www.linear.com/docs/41892
http://www.linear.com/docs/41892

SmartMesh WirelessHART User's Guide Page of 91 135

The mote states are as follows:

 While in this state, the mote accepts configuration commands. Upon receiving a join command, the deviceIdle:

moves into the state. This state is equivalent to the HART state.Searching Low Power

SmartMesh WirelessHART User's Guide Page of 92 135

 The mote enters deep sleep when it receives the command from the attached serialDeep Sleep: lowPowerSleep

processor. In this state, the device can no longer respond to serial commands and must be reset to resume normal

operation. For power consumption information, refer to the mote product datasheet.

 A special search state, invoked by the command, where the mote listens forPromiscuous Listen: search

advertisements from any Network ID, and reports heard advertisements. The mote will not attempt to join any network,

and will proceed to the Searching state when given the join command.

: In this state, the device keeps its receiver on with a configurable duty cycle while searching for theSearching

network. This state is equivalent to the HART Active Search state or Passive Search state, depending on the duty cycle

setting.

: The mote has detected a network and has received a join request from the manager.Negotiating

: The mote has joined the network and established communications with the network manager, but has noConnected

links for sending or receiving application data. This state is equivalent to the state in WirelessHART.Quarantine

: The mote has links to the network manager and the device has sufficient bandwidth for basicOperational

communication with the control program (through the network manager).

: The mote no longer has links to the network and will reset after the disconnect timeout.Disconnected

5.3 Joining

The OEM microprocessor must interact with the mote in order for it to boot and connect to the network. The following

sections walk through the steps required to bring a device onto the wireless mesh network, as illustrated in the following

diagram.

SmartMesh WirelessHART User's Guide Page of 93 135

State Machine–Connecting to Network and Disconnecting from Network

SmartMesh WirelessHART User's Guide Page of 94 135

5.3.1 OEM Microprocessor Boot

The OEM microprocessor typically goes through a boot sequence after power is applied to it. The OEM microprocessor should

keep the mote in reset until its serial port is fully configured and ready to receive messages from the mote. Since the mote still

consumes current while powered and held in /RST state (see product datasheet for current consumption specifications), the

OEM microprocessor should minimize the time between mote power up and when it releases the mote /RST line.

5.3.2 Mote Boot

When the OEM microprocessor releases the mote /RST line, the mote goes through its normal boot process. Refer to the

product datasheets for the expected mote boot time. As documented in the Mote Serial API Guide,SmartMesh WirelessHART

the mote sends a notification after it boots. The mote continually sends the boot notification until the OEM processor canboot

acknowledge it. Once boot is acknowledged, the mote enters the Idle state.

5.3.3 Pre-join Configuration

When the mote is in the Idle state, the OEM microprocessor can configure various operational parameters. Some operational

parameters (stored in mote non-volatile memory) need to be programmed at least once in the life of the mote while others

may need to be programmed each time the mote enters the Idle state.

Program the following parameters at least once in the life of the mote:

 and —For improved security, the Network ID and join key forsetNVParameter<networkId> setNVParameter<joinKey>

the device should be set to values other than the Dust factory .default settings

—This parameter describes the power source for the field device, and specifically thesetNVParameter<powerInfo>

portion of power allocated to the mote.

—In WirelessHART-compliant networks, the mote uses this value to reply tosetNVParameter<HARTantennaGain>

HART commands 797 and 798. For more information, see CMD 797 Write Radio Power Output and CMD 798 Read

Radio Power Output in the Wireless Command Specification (HCF_SPEC-155).

In addition to the required parameters described above, the OEM microprocessor may choose to change the following

parameters:

—This parameter can be used to assign the mote a different MAC address (for example,<macAddress>setNVParamete

a HART-compliant MAC address). By default, the mote comes with a MAC address from Dust Networks’ IEEE address

space.

The OEM microprocessor should also take advantage of the following parameters available to it through the mote serial API:

SmartMesh WirelessHART User's Guide Page of 95 135

—For improved security, the join key for the device should be set to values other than thesetNVParameter<joinKey>

Dust factory default values. Note that the manager's Access Control List (ACL) table must be in synch with the keys

programmed on the devices.

—Time To Live (TTL) is the maximum number of hops the packet may traverse before it issetNVParameter<ttl>

discarded from the network.

 Program the following the following parameters each time the mote enters the Idle state:

The was selected to reach a reasonable join rate without excessive—setParameter<joinDutyCycle> default setting

power consumption. Should a faster join rate be preferred at the expense of higher current consumption (for network

demonstrations, or development systems), refer to the for further detailsSmartMesh WirelessHART Mote API Guide

and guidance for setting join duty cycle.

—Sets the HART CMD 0 and CMD 20 information as defined in the Universal CommandsetParameter<hartDeviceInfo>

Specification, (HCF_SPEC-127) for use during the join process. This only applies to WirelessHART-compliant devices.

—Sets the HART Device Status and HART Extended Device Status, which the motesetParameter<hartDeviceStatus>

uses when sending HART packets. Device status is described in the Command Summary Specification

(HCF_SPEC-99), table 12. Extended device status is described in the Common Tables Specification (HCF_SPEC-183),

table 17. This command only needs to be called once before joining - the device status and extended status are sent by

the OEM processor in each user packet, and are cached by the mote for its own packets. When there is a wireless

stack configuration change, the mote will generate a event to let the OEM processor know to update itsconfigChanged

copies of the the status bytes. See for more details. This only applies toKey WirelessHART Command Support

WirelessHART-compliant devices.

Refer to the for a complete list of available parameters.SmartMesh WirelessHART Mote API Guide

5.3.4 Network Joining

Once the OEM microprocessor has completed its pre-join configuration, it may issue the API command. The time forjoin

network joining varies from network to network and from mote to mote, and depends on factors such as number of available

neighbors, network traffic level, and RF interference. The mote will send an packet indicating that the mote isevent

operational. At this point, the mote has joined the network, it is now capable of receiving data from the manager and setting

up bandwidth services to transmit data.

The command is a Dust Networks API command and should not be confused with the HART CMD 771 Forcejoin

Join Mode described later in this guide. For more information about network joining for WirelessHART applications,

see CMD 771 Force Join Mode.

http://www.linear.com/docs/41893
http://www.linear.com/docs/41893

SmartMesh WirelessHART User's Guide Page of 96 135

5.4 Services

The SmartMesh network has great flexibility to control bandwidth allocation, allowing it to accommodate a wide variety of

applications. The network can be configured for simple data reporting applications with a single parameter at the manager

API, or alternatively, the network can use dynamic bandwidth services (now called in WirelessHART 7.4) that allowTimetables

it to allocate different bandwidth to individual devices and change bandwidth allocation over time. This chapter describes how

to use the dynamic bandwidth model for full flexibility.

5.4.1 Service Characteristics and Timing Parameters

The dynamic bandwidth services mechanism provides a means by which the mote may request bandwidth from the network

manager. The following table describes the characteristic usage for bandwidth services.

Application

Domain

Characteristics Bandwidth Originator

Maintenance Symmetric data traffic, such as request/response pairs. Network manager

Publish Data sent regularly from the device to the client application. For example, send

sensor reading once every 5 minutes.

Device (upon receipt of

request to burst)

Block

transfer

Temporary high-speed transfer of large chunks of data. For example, uploading

a diagnostics file from mote to client application.

Upstream - Device (upon

receipt of request)

Downstream - Client

application

Event Latency-sensitive data sent infrequently from mote to client application. For

example, process alarms.

Device (during

initialization)

The following table contains timing specifications for service requests and retries for Publish, Block Transfer, and Event

services. Maintenance service is not subject to service rejection because it is automatically allocated by the manager at join

time.

Variable Description Min Max Units

T

Svc_Retry

Time from the OEM microprocessor receiving a service rejection (via serviceIndication

mote API) to OEM microprocessor retrying the service

2 Minutes

SmartMesh WirelessHART User's Guide Page of 97 135

5.4.2 Service Types

motes support bandwidth services to accommodate the dynamic bandwidth needs of the complexSmartMesh WirelessHART

applications common in monitoring and control. The services mechanism provides a means by which the mote may request

bandwidth from the network manager. When used in conjunction with a manager, the deviceSmartMesh WirelessHART

receives the full benefits of bandwidth services to support the range of tasks that a fully productized device needs to

perform—not just regular data reporting, but also rapid request-response configuration, block transfers, and alarm messages.

Services may be either of the following:

Manager-originated-Bandwidth services pushed from the network manager to the device.

Device-originated-Bandwidth services requested by the OEM microprocessor via the API commands, as described

below.

5.4.3 Non-Service Bandwidth Control

The mote may skip request services only if all of the following conditions are met:

The system is not WirelessHART compliant

Dynamic bandwidth allocation is not required.

The client application (communicating to the manager) uses the bandwidth controlSmartMesh WirelessHART

manager API commands (e.g. setConfig Network requestedBasePkPeriod or activateFastPipe)

to ensure bandwidth is always sufficient for the field device.

If the above conditions are met, then the OEM microprocessor is not required to request services and may use service ID

0x80 when sending data via the send command.

5.4.4 Using the Services API

Service-related API Commands

For device-originated services, the mote makes the service requests based upon the values of the service table entries that are

filled in by the OEM microprocessor via the services API. The mote manages the service request packet exchange with the

network manager (initial request, retries, and delayed response handling). The mote maintains a service table where each

entry describes the service and the current service status (for example, whether the service is active).

SmartMesh WirelessHART User's Guide Page of 98 135

In the 7.4 version of the HART specification, the term has been changed to . API calls still use theservice timetable

"service" term.

The mote serial API provides the following commands to manage services:

—This command enables a microprocessor to request a new service or modify an existingsetParameter<service>

device-originated service. A successful response to this command indicates that the mote has updated its service table

and will send a service request to the network manager once the mote is operational.

n—The mote sends this command to the microprocessor when it updates its service table afterserviceIndicatio

receiving notice of the following:

A new device-originated service was granted as a result of service request initiated by the microprocessor

A manager-originated service was created

An existing service was updated or deleted

—This command enables the microprocessor to check the services description and status ofgetParameter<service>

service table entries. The service table contains both manager-originated and device-originated services.

SmartMesh WirelessHART User's Guide Page of 99 135

Transaction Diagram—Bandwidth Service Requests

The following are specific usage scenarios for requesting services.

—The response to a service request may take some time if it results in the networkRetrying service requests

manager adding bandwidth to the network. The mote automatically handles communication retries with the network

manager until it receives a response. (In WirelessHART terminology, the mote will handle Delayed Response.) If a

service is denied, the microprocessor may re-send a service request to the network manager by reissuing the

 request. A service may be denied if there is a problem in the network (for example, insufficientsetParameter<service>

bandwidth upstream of the mote). The microprocessor may retry the service request after waiting two minutes to

allow the network manager time to attempt to resolve the network problem.

—If a service is active at rate X, and the microprocessor requests an update to a rate Y,Modifying an existing service

the service state remains , but the service rate remains at rate X until the network manager responds to grantActive

rate Y. The mote forwards a event to the microprocessor when it receives a notification from theserviceIndication

network manager.

—To delete a service, the microprocessor should issue a command with aDeleting a service setParameter<service>

time value of zero. For more information, refer to the command in the setParameter<service> SmartMesh

Mote API Guide.WirelessHART

SmartMesh WirelessHART User's Guide Page of 100 135

—Dust network managers continuously optimize network links to maintainNetwork manager removes a service

network performance in the face of RF challenges. However, in the event that the manager cannot sustain a service

due to network conditions, it will reduce the allocated bandwidth to a level that effectively disables the service. The

mote will receive notification from the network manager and forward a command to theserviceIndication

microprocessor.

The microprocessor may choose to submit another request to update the service at a future time.

Service Table

The mote service table describes both granted and requested services. The parameters below are used in the

 and commands.setParameter<service> getParameter<service>

—A unique identifier for the service.Service ID

—Indicate device-originated services that the microprocessor has requested.Service IDs from 0x00 to 0x7F

—Indicate manager-originated services.Service IDs from 0x80 to 0xFF

—Used in , this field reflects the state of the service. The fields are as follows:Service State getParameter<service>

—Indicates whether a service is inactive, active, or requested. Here, “requested” means OEMStatus bit

microprocessor has sent requested a service through , but either the mote has not yetsetParameter<service>

sent a request to the network manager, or the network manager has not accepted/denied.

—Used for services in the requested state, the servicepending bit indicates if the mote hasService pending bit

sent a service request to the network manager.

Service Flags

—The mote is the source/sender of data.Source

—The mote is the receiver of data.Sink

—Designates whether the traffic will be used at regular intervals, or on anIntermittent/regular interval

intermittent basis (for example, events).

Application Domain

—Symmetric data traffic, such as request-response pairs.Maintenance

—Data sent at a regular interval from mote to the gateway.Publish

—Data sent infrequently from the mote to gateway (such as process alarms).Event

—Temporary high-speed transfer of large chunks of data.Block transfer

—Because services are always between the gateway and the mote in Destination Address SmartMesh WirelessHART

network, the destination address should be specified as 0xF981.

—The time variable describes the rate of data.Time

If data is being regularly reported (the intermittent bit is not set on service request flag), then time is the period

between data sent in milliseconds.

If the data is intermittent, then time is the desired latency in milliseconds.

To delete a service, set the time field of the desired service to zero. Service request flags, application domain,

and destination address are ignored by the mote when time equals zero.

The following transaction diagram further illustrates how the service state byte is updated during both a successful and an

unsuccessful service request.

SmartMesh WirelessHART User's Guide Page of 101 135

1.

2.

3.

4.

5.

6.

The OEM Microprocessor initiates a service request by calling on an unused service ID.setParameter<service>

The mote receives the command, updates its service table, and initiates a wireless request tosetParameter<service>

the network manager. The mote handles all retries until it receives a success, warning, or error (in WirelessHART

terminology, this is a non-DR response).

The OEM microprocessor requests a service for service ID 2.

The OEM microprocessor attempts to request a service ID 1. However, since there is a service request pending already

for service ID 1, a serial API error is returned.

The network manager grants the service. The mote updates its service table, and sends a packet toserviceIndication

the OEM Microprocessor. The mote then initiates a request to the network manager for the next valid service in the

service table.

The network manager rejects the service. The mote updates its service table, and sends a packet toserviceIndication

the OEM microprocessor.

Transaction Diagram—Service State Values

SmartMesh WirelessHART User's Guide Page of 102 135

5.4.5 Maintenance

The purpose of the Maintenance service is to give the wireless network a minimum overhead bandwidth for basic network

control communications. The Maintenance service can also be used for user data when all devices in the network require

relatively the same amount of bandwidth. Unlike the other bandwidth services, the Maintenance service is not designed to

accommodate individual device bandwidth requirements, which may vary widely from device to device

Maintenance Service Origination

When a mote joins the network, a network manager will establish Maintenance bandwidth and push the service ID to the

mote. Maintenance is therefore a manager-originated service.

The network manager will write the service to the mote. Upon receipt of the write service from the network manager, the mote

will pass a mote serial API message to the OEM microprocessor. This message includes the service ID andserviceIndication

application domain among other information.

Maintenance–Single Request/Response Pair Transaction Diagram

SmartMesh WirelessHART User's Guide Page of 103 135

Using Maintenance Service

The following state machine diagram illustrates how an OEM microprocessor may respond to maintenance requests. As

described above, the Maintenance bandwidth and service ID are established by the network manager. Therefore, the device

(more specifically the OEM microprocessor) may be assured that it will have the Maintenance service ID prior to receiving a

Maintenance request. The result is the following simple state machine showing that when the OEM microprocessor receives a

Maintenance request, it may reply to it using the Maintenance service ID as soon as the request is received.

State Machine–Maintenance Application Domain

5.4.6 Publish

The Publish service is enabled when the device needs to regularly send data, such as reporting a sensor reading on a fixed

interval. Once a device is configured, it may then publish data indefinitely (potentially for years). The device should continue to

publish data until it is instructed to stop. Similarly, once a Publish bandwidth service is established, it is expected to remain in

use until it is overwritten by a new Publish command.

Publish Service Origination

In the Publish application domain, the device is responsible for requesting bandwidth. The transaction diagram below provides

an overview of bandwidth service handling for Publish.

SmartMesh WirelessHART User's Guide Page of 104 135

When the OEM microprocessor receives a command to burst data, the OEM microprocessor must request a bandwidth

service via the mote serial API command. Once the bandwidth service has been granted, the OEMsetParameter<service>

microprocessor may begin publishing data at a rate that does not exceed the granted bandwidth.

In -compliant applications, the OEM microprocessor can receive HART common practice commandsWirelessHART

to burst data. The OEM microprocessor is responsible for managing command responses, such as Delayed

Response (DR) responses to the HART Gateway. (Refer to the HART specifications HCF_SPEC-290, for more

details on DR).

Publish–Transaction Diagram

http://www.hartcomm.org

SmartMesh WirelessHART User's Guide Page of 105 135

Using the Publish Service

The following state machine diagram illustrates a typical OEM microprocessor design for handling service requests

specifically for the Publish application domain. When the OEM microprocessor receives a request to publish data, it should

request a bandwidth service and then wait for the network manager response, as indicated by a packet fromserviceIndication

the mote serial API. Note that because the service request exchange between the mote and the network manager uses reliable

transport, the OEM microprocessor will always either receive a API notification or in the case of transportserviceIndication

failure, the mote will reset.

If the n response is received, but the service is either rejected, or the granted bandwidth is notserviceIndicatio

sufficient to service the burst request, then the OEM microprocessor should retry the service request after waiting a

period of T as defined above in . Even in a well-managedSvc_Retry Service Characteristics and Timing Parameters

network with good path stability, the network manager may take many minutes to add the bandwidth needed to satisfy

the service request.

If the service is granted successfully, the OEM microprocessor may begin bursting data at regular intervals (consistent

with the level of bandwidth service).

In WirelessHART applications, after several unsuccessful retries (for example, 5 retries), the OEM microprocessor

must set the “Capacity Denied” status and the “More status available” bits in the Device Status byte. The OEM

microprocessor must call with the updated value.setParameter<hartdeviceStatus>

SmartMesh WirelessHART User's Guide Page of 106 135

State Machine–Publish Application Domain

SmartMesh WirelessHART User's Guide Page of 107 135

setParameter <service>

Parameter

Value Description

Service Index <Unused device-originated service

ID>

Service Request Flags 0x01 Device is source, but not sink, not

intermittent

Application Domain 0x00 Publish

Destination address 0xF981

Time Set to data packet interval

Service Request Parameters for Publish

Send

Parameter

Value Description

Flags Bit 7 = 0

Bit 6 = 0

Bits 5-3

= 0

Bit 2 = 0

Bit 1 =

<packet

ID>

HDLC request, Best effort, with packet ID enabled. For details on packet ID, see the section titled

“Flags” under the HDLC packet format discussion in the Mote Serial APISmartMesh WirelessHART

Guide.

Destination

address

0xF981

Service

Index

<service

ID>

Same as what was used in service request

Application

Domain

0x00 Publish

Priority 0x02 For WirelessHART applications, this corresponds to "data" priority per Table 18, HCF_SPEC-085.

Reserved 0xFFFF

Sequence

number

0xFF

Send Parameters for Publish

SmartMesh WirelessHART User's Guide Page of 108 135

Handling Reductions in Available Publish Bandwidth

At times the network manager may update an existing service, such as during bandwidth restrictions. When the mote receives

this service update from the manager, it will forward a packet to the OEM microprocessor. The OEMserviceIndication

microprocessor must include logic to handle reductions in available bandwidth for Publishes.

5.4.7 Block Transfer

The Block Transfer application domain is used for sending large consecutive blocks of data, such as data log files. In a

network, although block transfers can occur in both upstream and downstream directions, theSmartMesh WirelessHART

network manager (or HART gateway) handles bandwidth allocation for the downstream block transfers. Therefore, the OEM

microprocessor may receive downstream block transfers without any special handling. In contrast, since the device is the

sender in an upstream block transfer, the device requests and owns the bandwidth service. The following sections cover

upstream block transfers.

Block Transfer Service Origination

By definition, block transfers have a beginning and end, therefore the bandwidth service for a block transfer should be

requested when the transfer is requested and deleted or reduced when the transfer is complete. The following transaction

diagram provides an overview of the Block Transfer service request.

When the OEM microprocessor receives a command to set up a block transfer, the OEM microprocessor must request the

bandwidth through the mote command. Once the bandwidth service has been granted, the OEMsetParameter<service>

microprocessor may begin sending data at a rate not to exceed the granted bandwidth. Once the bandwidth service has been

granted, the OEM microprocessor may begin sending data at a rate not to exceed the granted bandwidth.

In WirelessHART-compliant applications, a HART command is used to set up a block transfer. The OEM

microprocessor is responsible for managing the HART Command responses, such as Delayed Response (DR)

responses to the HART Gateway.

SmartMesh WirelessHART User's Guide Page of 109 135

Send Block Transfer–Transaction Diagram

Using the Block Transfer Service

The following state machine diagram illustrates a typical OEM microprocessor design for handling service requests

specifically for the Block Transfer application domain. When the OEM microprocessor receives a request for a block transfer,

it should request a bandwidth service, then wait for the network manager response, as indicated by a packetserviceIndication

from the mote serial API. Note that because the service request exchange between the mote and the network manager uses

reliable transport, the OEM microprocessor will always receive a API notification.serviceIndication

If the response is received, but the service is rejected, then the OEM microprocessor should retry theserviceIndication

service request after waiting a period of T as defined in . EvenSvc_Retry Service Characteristics and Timing Parameters

in a well-managed network with good path stability, the network manager may take many minutes to add in the

bandwidth needed to satisfy the service request.

If the service is granted successfully or at a reduced rate, the OEM microprocessor may begin bursting data at regular

intervals (consistent with the level of bandwidth service). If the sending device exceeds granted services, there is a risk

of congesting the network.

SmartMesh WirelessHART User's Guide Page of 110 135

After the OEM microprocessor is finished sending data, it must request that the Block Transfer service be deleted. Only

one Block Transfer service can be active at a time, and if the OEM microprocessor does not delete the service it will be

unavailable for other devices to use.

In WirelessHART-compliant applications, after several unsuccessful retries (for example, 5 retries), the OEM

microprocessor must set the “Block Transfer Pending” status and the “More status available” bits in the Device

Status byte. The OEM microprocessor must call with the updated value.setParameter<hartdeviceStatus>

State Machine–Block Transfer Application Domain

SmartMesh WirelessHART User's Guide Page of 111 135

5.4.8 Events

The Event bandwidth service is used for sending data packets during exceptions, such as warnings. While these events

normally occur infrequently, when they do occur, usually delivery of the data packet is urgent. Therefore, the bandwidth

services must be established ahead of time. Note that because the service requests exchanged between the mote and the

network manager use reliable transport, the OEM microprocessor will always either receive a API commandserviceIndication

or in the case of transport failure, the mote will reset.

Event Service Origination

In the Event bandwidth service, the device is responsible for requesting bandwidth. The following transaction diagram

provides an overview of bandwidth service handling for Events.

As described in , after starting up the mote the OEM microprocessor goes through a sequenceConnecting and Disconnecting

of configuration commands to initialize the device. Once the mote has joined the network and is in the Operational mote state,

the OEM microprocessor should request an event service through the command. One of thesetParameter<service>

parameters of the service request is the requested latency for packets. In general, faster latency comes at the cost of higher

power consumption. network managers will balance latency against power consumption for eventSmartMesh WirelessHART

services.

Current generation managers do NOT lay in additional bandwidth in response to an Event service request - the

existing Maintenance service bandwidth is used. An OEM processor must gracefully tolerate a serviceIndication

with a lower value than requested.

However, the OEM microprocessor should request latency reasonably, should the device be used with non-Dust Networks

managers. After the service request, the OEM microprocessor should then wait for the network manager response, as

indicated by a packet from the mote serial API. Note that because the service requests exchange between theserviceIndication

mote and the network manager use reliable transport, the OEM microprocessor will always either receive a serviceIndication

API command or in the case of transport failure, the mote will reset.

If the response is received, but the service is rejected, then the OEM microprocessor should retry theserviceIndication

service request after waiting a period of T as defined in . EvenSvc_Retry Service Characteristics and Timing Parameters

in a well-managed network with good path stability, the network manager may take many minutes to add in the

bandwidth needed to satisfy the service request.

If the service has been granted successfully, the OEM microprocessor may proceed to the Normal Operation state.

Later, if and when an event occurs on the device, the OEM microprocessor should use the event service ID to send its

packet.

SmartMesh WirelessHART User's Guide Page of 112 135

In WirelessHART-compliant applications, after several unsuccessful retries (for example, 5 retries), the OEM

microprocessor must set the “Capacity Denied” status and the “More status available” bits in the Device Status

byte. The OEM microprocessor must call with the updated value. The OEMsetParameter<hartdeviceStatus>

microprocessor may then proceed to the Normal Operation state.

State Machine–Event Application Domain

5.5 Communication

For serial transmissions from the microprocessor to the network, users may choose between best-effort and reliable transport

types. In WirelessHART-compliant applications, the transport type is generally dictated for each message type.

SmartMesh WirelessHART User's Guide Page of 113 135

1.

2.

3.

4.

5.

5.5.1 Best-Effort Communication

Packets requiring no explicit receipt acknowledgement may be sent through the network using a best-effort communication

mechanism. This lowest overhead method is best suited when no application acknowledgement is required or when a small

percentage of lost packets is tolerable. At the receiver, all packets with the best-effort delivery flag are forwarded to the

application layer and no acknowledgements are generated. Consequently, the sender receives no feedback about the success

of individual packet delivery. Applications requiring guaranteed delivery should use the reliable communication mechanism.

Data received from the network is passed to the microprocessor by the mote serial API command with the flagsdataReceived

byte set to best effort. The microprocessor should always use best effort communication when it has a data packet to send

through the network (as opposed to a response packet to a reliable request). For example, best-effort communication is

recommended when periodically sending or bursting sensor data. The microprocessor sends a best-effort communication by

using the command with the flags byte set to best effort.send

5.5.2 Reliable Communication

In reliable communication, packets are acknowledged end-to-end, providing confirmation to the application layer that the

packet was successfully delivered. If the confirmation is not received, the sender will retransmit the packet. Downstream

communication refers to packets sent from the controller to the microprocessor. Upstream communication refers to packets

sent from the microprocessor to the controller (see the diagram below). In the case of downstream reliable communication,

the microprocessor must respond via the command. A response from the microprocessor is required after receiving a send

 command with the flags byte set to reliable. If the application layer has nothing to send to the mote, the payloaddataReceived

should contain no data. Failure to send a response may result in the network manager taking corrective action, such as

disconnecting the mote from the network.

Microprocessor-initiated reliable upstream is not supported.

Downstream Reliable Retries

Downstream reliable retries are handled in the following manner:

When the mote receives a network packet, it forwards the payload, along with the transport sequence number via the

 serial API command. The microprocessor can compare the sequence number with that of the previousdataReceived

packets to check if it is a duplicate.

If the mote receives a duplicate packet, but has not received a send command in response, it forwards the message to

the microprocessor.

The sensor processor replies via the serial API command and includes the sequence number and source addresssend

from the request along with the payload. The mote receives this and passes it on to the network.

If the mote still has the buffered response from the microprocessor, it discards the duplicate and replies to the

network on behalf of the microprocessor to close out the reliable acknowledgement.

The mote will retain the buffered response until it receives a new data packet from the manager (with new sequence

number), which signifies to the mote that the manager received the response to its previous packet.

SmartMesh WirelessHART User's Guide Page of 114 135

5.6 Events and Alarms

The mote serial API includes events and alarms that allow a microprocessor to have full visibility of mote states and

conditions.

An alarm is an ongoing condition, such as low supply voltage or an error in non-volatile memory. Refer to the section on

 in the Mote API Guide for details on reading alarms and informationgetParameter<moteStatus> SmartMesh WirelessHART

about the available alarms.

By contrast, an event is defined as a discrete occurrence in mote or network operation. Examples of events include a mote

startup, a mote failure to join the network, or a change in alarm condition, such as an alarm opening or closing.

Users can control which events are pushed to the microprocessor by using the command.setParameter<eventMask>

5.7 Timestamps

Many of the benefits of a network, such as its high reliability and low power consumption, areSmartMesh WirelessHART

attributable to the fact that it is a time synchronized mesh network. This means that under normal conditions every mote in

the network has a shared sense of time accurate to better than a millisecond. Another advantage of time synchronization is

that this sense of time is available to the microprocessor for application usage by means of the getParameter<time>

command, which returns network time and Universal Time Clock (UTC) time. For detailed information on timestamp

performance, see Application Note: Obtaining Accurate Timestamps.

5.8 WirelessHART-Compliant Applications

The information in this section is only important for OEMs developing a WirelessHART-compliant device or network. If you do

not have WirelessHART compliance requirements, this section can be ignored.

5.8.1 Command Termination

A mote provides the wireless connectivity to the mesh network and terminates a portion of the command set.WirelessHART

The HART commands required of a field device must be terminated by either the mote or the microprocessor. In general, the

mote terminates HART commands associated with the wireless command specification (HCF_SPEC-155) that are appropriate

to a field device. The OEM microprocessor is responsible for terminating all other HART commands. The following table

describes HART command number partitions. See HCF_SPEC-099 for the latest command information.

HART CMD

Number

Types Terminated By

http://www.hartcomm.org

SmartMesh WirelessHART User's Guide Page of 115 135

0-767 Universal, Expansion Flag, Common Practice, Non-Public,

Device-Specific, Reserved

OEM microprocessor

768-1023 WirelessHART (HCF_Spec-155) Device Commands terminated

by mote

1024-64,511 Device Family, Reserved OEM microprocessor

64,512 - 64,765 Wireless Device-Specific Device Commands terminated

by mote

64,766-65,535 Additional Device-Specific, Reserved OEM microprocessor

SmartMesh WirelessHART User's Guide Page of 116 135

Mote-terminated Commands

The mote terminates the wireless command set (specified in HCF_SPEC-155) that are appropriate for a field device, as

opposed to a network manager or gateway. Most of the HART commands terminated by the mote are related to wireless

operation of the field device. For wireless HART commands that relate to operation of the field device as a whole, the mote

may require information from the OEM microprocessor in order to implement the command.

Sources of Mote-terminated HART Commands

The mote can receive HART commands from two different sources:

Over wireless from the manager, either via the gateway session or network manager session

or

Via the mote serial API (serial API command) from the microprocessor (the command originated fromhartPayload

HART handheld and was passed to mote by microprocessor) Messages received from the network manager typically

have full access to the HART commands. Messages received via the serial API typically have full read access, but

limited write or configuration access (see the Serial API Access column in the table in).HCF_SPEC-155 Commands

The following table summarizes the mote’s error response to commands that it receives.

Refer to HCF_SPEC-155 Commands for a complete list of commands that a mote will terminate.

Command Received By Mote Example Mote Response

Unimplemented Commands in

HCF_SPEC-155

CMD

775,

Write

Network

Tag

The mote responds with a valid HART response containing the

HART response code 64, “Not Implemented."

Reserved WirelessHART commands

(commands in the wireless address space,

but not defined in HCF_SPEC-155)

CMD

64,535

The mote responds with a valid HART response containing the

HART response code 64, "Not Implemented."

SmartMesh WirelessHART User's Guide Page of 117 135

HART command terminated by the mote, but

with access restricted to the manager (for

example, from the Gateway or via the

mote serial API)hartPayload

CMD

795,

Write

Timer

Interval

The mote responds with a valid HART response containing the

HART response code 16, "Access Restricted."

HART command not terminated by the mote

(commands not in HCF_SPEC-155)

CMD 1,

Read

Primary

Variable

If received wirelessly, passed to OEM microprocessor via

 notification. If via serial API, the motedataReceived hartPayload

responds with the response code = "Invalid Value" (see

Mote Serial API Guide).SmartMesh WirelessHART

HCF_SPEC-155 Commands

Termination

mt Terminated by the mote (Device)

mgr Terminated by the network manager

Access

ser Command will return valid response (non RC16) when requested via serial API

mgr Command will return valid response (non RC16) when requested from network manager

any Command will return valid response (non RC16) when requested via mote serial API, network manager, or from the

HART Gateway session.

Legend for IA-510 Mote HART Command List

CMD Description Termination Access Comments

768 Write Join Key mt any

769 Read Join Status mt any

770 Request Active Advertise mt any

771 Force Join mt any

772 Read Join Mode Configuration mt any

773 Write Network ID mt mgr,

ser

774 Read Network ID mt any

775 Write Network Tag Not implemented (RC64)

SmartMesh WirelessHART User's Guide Page of 118 135

776 Read Network Tag Not implemented (RC64)

777 Read Wireless Device Capabilities mt any

778 Read Battery Life mt any

779 Report Device Health mt any

780 Report Neighbor Health List mt any

781 Read Device Nickname Address mt any

782 Read Session List mt any

783 Read Superframe List mt any

784 Read Link List mt any

785 Read Graph List mt any

786 Read Neighbor Property Flag

787 Report Neighbor Signal Levels mt any

788 Alarm "Path Down” mgr n/a Access Restricted (RC16)

789 Alarm "Source Route Failed” mgr n/a Access Restricted (RC16)

790 Alarm "Graph Route Failed” mgr n/a Access Restricted (RC16)

791 Alarm "Transport Layer Failed” mgr n/a

793 Write UTC Time Mapping mgr mgr

794 Read UTC Time Mapping mt any

795 Write Timer Interval mt mgr

796 Read Timer Interval mt any

797 Write Radio Power Output mt any

798 Read Radio Output Power mt any

799 Request Service mgr n/a Access Restricted (RC16)

800 Read Service List mt any

801 Delete Service mgr, mt mgr May be sent mote->mgr or mgr->mote

802 Read Route List mt any

803 Read Source-Route mt n/a

SmartMesh WirelessHART User's Guide Page of 119 135

804 Read CCA Mode mt any

805 Write CCA Mode mt mgr Access Restricted (RC16) for non-network

manager

806 Read Handheld Superframe mt any No Handheld Superframe (RC9)

807 Request Handheld Superframe Mode mt Not implemented (RC64)

808 Read Packet Time-To-Live mt any

809 Write Packet Time-To-Live mgr Access Restricted (RC16) for non-network

manager

810 Read Join Priority mt any

811 Write Join Priority mt mgr

812 Read Packet Receive Priority mt any

813 Write Packet Receive Priority mt mgr

814 Read Device List Entries

815 Add Device List Table Entry

816 Delete Device List Table Entry Not implemented (RC64)

817 Read Channel Blacklist Not implemented (RC64)

818 Write Channel Blacklist

819 Read Back-Off Exponent mt any

820 Write Back-Off Exponent mt mgr

821 Write Network Access Mode Not implemented (RC64)

822 Read Network Access Mode Not implemented (RC64)

823 Request Session mt Not implemented (RC64)

832 Read Network Device Identity using

Unique ID

Not implemented (RC64)

833 Read Network Device's Neighbor Health Not implemented (RC64)

834 Read Network Topology Information Not implemented (RC64)

835 Read Burst Message List Not implemented (RC64)

836 Flush Cached Responses for a Device Not implemented (RC64)

SmartMesh WirelessHART User's Guide Page of 120 135

837 Write Update Notification Bit Mask for a

Device

Not implemented (RC64)

838 Read Update Notification Bit Mask for a

Device

Not implemented (RC64)

839 Change Notification Not implemented (RC64)

840 Read Network Device's Statistics Not implemented (RC64)

841 Read Network Device Identity using

Nickname

Not implemented (RC64)

842 Write Network Device's Scheduling Flags Not implemented (RC64)

843 Read Network Device's Scheduling Flags Not implemented (RC64)

844 Read Network Constraints Not implemented (RC64)

845 Write Network Constraints Not implemented (RC64)

960 Disconnect Device mt mgr

961 Write Network Key mt mgr

962 Write Device Nickname Address mt mgr

963 Write Session mt mgr

964 Delete Session mt mgr

965 Write Superframe mt mgr

966 Delete Superframe mt mgr

967 Write Link mt mgr

968 Delete Link mt mgr

969 Write Graph Edge mt mgr

970 Delete Graph Connection mt mgr

971 Write Neighbor Property Flag mt mgr

972 Suspend Device(s) Not implemented (RC64)

973 Write Service mt mgr

974 Write Route mt mgr

975 Delete Route mt mgr

SmartMesh WirelessHART User's Guide Page of 121 135

976 Write Source-Route Not implemented (RC64)

977 Delete Source Route Not implemented (RC64)

64,512 Read Wireless Module Revision mt any

Mote WirelessHART Command List

Microprocessor-terminated Commands

The OEM microprocessor is responsible for terminating the non-wireless HART commands, which are not contained in

HCF_SPEC-155. Of the ones the OEM microprocessor terminates, there are few commands for which the OEM

microprocessor will need to communicate with the mote to properly implement the command.

The OEM microprocessor can receive and reply to HART commands over the air via the mote serial API (using the

 and mote serial API commands) or in most cases, through a serial port (for example, via a HARTdataReceived send

Handheld).

Sources of Microprocessor-terminated HART Commands

When a mote receives from the network a HART command that it does not terminate, it forwards the HART command to

microprocessor via the command.dataReceived

API support

dataReceived Notification, send Command

When the mote receives a HART packet over the air, it parses the command and determines whether it terminates the

command (see the table in). If the mote does not terminate the HART command, it passes theCommand Termination

command to the OEM microprocessor via the command.dataReceived

SmartMesh WirelessHART User's Guide Page of 122 135

The microprocessor must respond using the command. Note that the mote will extract copies of the device status andsend

extended device status from the HART payload, and use those values in its HART packets. Refer to the SmartMesh

Mote Serial API Guide for more information about the command and details on handling reliableWirelessHART dataReceived

downstream retries.

The following diagram shows a typical downstream request-response transaction.

Transaction Diagram–Typical Request/Response

hartPayload Command

The mote serial API command allows the microprocessor to forward a HART command to the mote over thehartPayload

serial connection. These HART requests can come from the microprocessor, or they can be forwarded from a device that is

external to the field device (for example, a HART Handheld). The preceding section describes how HART commands are

handled via the command. Refer to the Mote Serial API Guide for more informationhartPayload SmartMesh WirelessHART

regarding command syntax and behavior.

Transaction Diagram–Using hartPayload Command for HART Handhelds

Typical Error Handling

As explained in the Mote Serial API Guide, for every reliable request received by the SmartMesh WirelessHART dataReceived

command, the OEM microprocessor must respond.

SmartMesh WirelessHART User's Guide Page of 123 135

If the OEM microprocessor receives a well-formed HART command that it does not terminate, it should reply with a

reliable response packet via the send command with a HART packet containing HART response code 64, “Not

Implemented.”

If the OEM microprocessor receives a packet that is not a well-formed HART command, it should reply with a reliable

response packet via the command with empty payload.send

Example of an End-to-end Transaction

The following is an example of an end-to-end downstream request-response transaction. In this example, the gateway uses

the serial API command to send HART Command 0 to the network manager. The network managersendRequest

acknowledges receipt of the and sends the HART packet over-the-air to the mote. After determining that it doessendRequest

not terminate this HART command, the mote uses the command to send the HART command request to thedataReceived

OEM microprocessor. The OEM microprocessor acknowledges receipt of the command.dataReceived

To respond to the HART command, the OEM microprocessor uses the send command to send its response to the mote. The

mote determines that it does not terminate this HART command and sends the command on to the network manager, which

then sends the gateway a serial data notification containing the command response.

End-to-end Transaction Diagram

5.8.2 Key WirelessHART Command Support

HART Join Shed Time

The WirelessHART specification defines join shed time, which governs how the mote searches for neighbors during the join

process. Dust Networks has engineered a more power-efficient means of searching for neighbors that is controlled by the

 command and does not affect HART device interoperability. It is recommended to use thesetParameter<joinDutyCycle>

default value for joinDutyCycle to reach the optimum join performance for mote power consumption. However, if the OEM

wishes to implement join shed time as defined in the HART spec, the following steps illustrate how to use the mote serial API

to accomplish this task:

SmartMesh WirelessHART User's Guide Page of 124 135

1.

2.

3.

4.

The OEM microprocessor should read the join shed time from the mote using (CMD 772 Read JoinhartPayload

Mode).

While the mote is in the state, issue the command, setting duty cycle to 100%Idle setParameter<joinDutyCycle>

(listen for neighbors 100% of the time).

Issue the command.join

After the OEM microprocessor has determined that join shed time has elapsed, issue the setParameter<joinDutyCycle>

command to set a lower percentage of OEM’s choosing.

Wireless Operation Mode and Join Process Status

The following table shows how the mote states map to the WirelessHART Operation Mode states and the Join status states as

defined in HCF_SPEC-183 Common Tables Specification, Table 51, Wireless Operation Mode and Table 52, Join Process

Status.

Hart

Operation

Mode

Code

HART

Operation

Mode State

Dust State HART

Join

Status

HART Join Status Description Dust Join

Status

Description

0 Idle Idle

1 or 6 Active

Search (1):

duty

cycle=100%.

Passive

search (6):

duty

cycle<100%.

Searching 0x001 Network Packets Heard. Set when first

packet with

matching

Network ID is

heard.

0x002 ASN Acquired. Set when first

advertisement

is processed.

0x004 Synchronized to Slot Time. Set when first

advertisement

is processed.

0x008 Advertisement Heard. Set when first

advertisement

is processed.

2 Negotiating Negotiating 0x010 Join Requested. Set on transmission of first join request. Same as

HART

description.

SmartMesh WirelessHART User's Guide Page of 125 135

0x020 Join Retrying. Set after the first join request retry (when

number of join requests is greater than two). Cleared

when device is Authenticated or when Active Search is

started.

Same as

HART

description.

0x040 Join Failed. Set on transition from Active Search mode to

Passive Search. Cleared on transition from Passive to

Active Search. Mote will move to HART Operational mode

6 - "Passive Search." Note: HART uses the term "Deep

Sleep" in Spec 183 table 52 instead of Passive Search.

Set when

mote stops

join attempts.

3 Quarantine Connected 0x080 Authenticated. Network Key, Network Manager Session

Established.

Same as

HART

description.

0x100 Network Joined. Normal superframe and links obtained. Set when

mote stops

using its join

links.

4 Operational Operational 0x200 Negotiating Network Properties. Gateway session

obtained. Initial Bandwidth requirements being negotiated

with Network Manager.

Set when the

gateway

session is

created.

0x400 Normal Operation Commencing. Set when the

gateway

session is

created.

Wireless Operation Mode and Join Process Status

Device Status Support

HCF_SPEC-085 specifies the transport layer header attached to all HART packets. Two key parts of the transport layer header,

the and the fields, pertain to field device status and are therefore owned by the OEMdevice status extended device status

microprocessor. The OEM microprocessor must periodically send the mote the device status and extended device status. To

streamline this process, the mote serial API supports two ways of sending the mote the status values:

 commandsetParameter<hartDeviceStatus>

 command (mote parses HART payload and caches status and extended status)send

Refer to the for command details.SmartMesh WirelessHART Mote API Guide

http://www.linear.com/docs/41893

SmartMesh WirelessHART User's Guide Page of 126 135

CMD 770 Request Activate Advertising

CMD 770, Request Activate Advertising is unique in how it is defined in HCF_SPEC- 155. HART allows this command to be

addressed either to the field device or to the network manager so that the same command can be forwarded from the field

device to network manager. The mote terminates CMD 770, Request Activate Advertising, and in turn will send a request to

the network manager (in the form of a CMD 770 request) to activate advertising. If the OEM microprocessor receives a CMD

770 (for example, from a HART handheld), it should forward CMD 770 to the mote using the mote serial APIhartPayload

command. It should not use the mote serial API command to send it directly to the network manager, even if thesend

handheld addresses the original packet to the network manager.

When the mote receives CMD 770, it responds with the HART response code 33, “DR Initiated,” and forwards the CMD 770

request to the manager. When the mote receives a response from the manager, it cashes the response values. The OEM

microprocessor should periodically send CMD 770 to the mote until the delayed response has completed. If mote is still

waiting for the manager’s response, it responds with HART response code 34, “DR Running.” Similarly, if the manager

responds with HART code 33, “DR Initiated,” or code 34, “DR Running,” the mote will respond with the code 34 and forward

another request to the manager. This process continues until the delayed response is completed, resulting in the mote

sending the OEM microprocessor a HART response code other DR Initiated or DR Running. If the final result is not read from

the mote within 10 minutes after the delayed response was initiated, the delayed response times out and the next CMD 770

will be treated as a new request rather than returning the previous cached result.

The HART response code 32, “DR Busy,” code 35 “DR Dead,” and code 36, “DR Conflict” have the following meaning for the

mote:

DR Busy—This code indicates that mote does not have sufficient resources to forward CMD 770 to the manager.

DR Dead—If the manager responds using DR Busy or DR Conflict, mote will translate the response code to DR Dead.

DR Conflict—If a delayed response is initiated and the next CMD 770 request contains a modified shed time and is

received while a request is outstanding to the manager, the mote responds with the code DR Conflict. If no manager

request is outstanding, mote will treat this request as new and respond with DR Initiated.

SmartMesh WirelessHART User's Guide Page of 127 135

CMD 771 Force Join Mode

CMD 771 Force Join Mode sets the join mode parameter, which controls the joining behavior of the mote as defined in the

HCF_SPEC-183 Common Tables Specification, Table 61, Join Mode Code. The mote stores join mode in its non-volatile

memory and by Dust factory default, the join mode is equal to 2, enabling it to join. While this is typically used by network

manager, the OEM microprocessor can use CMD 771 to:

Force mote to rejoin-CMD 771 with join mode equal to 1

Disallow mote to join-CMD 771 with join mode equal to 0

Enable a mote to join-CMD 771 with join mode equal to 2

When the mote receives command 771, it will update its local values (in non-volatile memory) for both join mode and shed

time. These values will be used the next time the mote receives the API command from the state. In the case wherejoin Idle

the join mode is equal to 1 (join now), the mote will store join mode value 2 (per the spec), reboot and go through the normal

boot sequence.

Using the mote serial API commands then will result in the mote rebooting and attempting to initiate join. Thedisconnect join

mote will still obey whatever join mode value that has been previously set. For example, if the mote is in join mode 0, then the

mote will not join when it receives the API command. In contrast, a CMD 771 with join mode equal to 1 will both updatejoin

the join mode value and force a mote to attempt to join by putting the mote in the state and having it follow the normalIdle

join sequence. See the diagram in .Connecting and Disconnecting

SmartMesh WirelessHART User's Guide Page of 128 135

CMD 797 Write Radio Power Output and CMD 798 Read Radio Power Output

The mote terminates CMD 797 Write Radio Power Output and CMD 798 Read Radio Power Output. These commands specify

the Equivalent Isotropic Radiated Power (EIRP) RF output energy of the entire field device, where: EIRP = conducted output

power + (antenna Gain - attenuation from connection) For example, if a mote has an 8 dBm conducted output connected to a

2 dBi antenna via a low loss coaxial cable, this will yield 10 dBm output EIRP. The mote serial API includes the command

 that enables the microprocessor to input the “(antenna Gain - attenuation fromsetNVParameter<HARTantennaGain>

connection)” to the mote.

Refer to the for syntax and default values.SmartMesh WirelessHART Mote API Guide

The RF output power can be controlled by an OEM microprocessor via the hartPayload<CMD 797>, which is

specified in EIRP, or via the native mote serial API commands, , ,setParameter<txPower> setNVParameter<txPower>

and , which are in conducted RF output powergetNVParameter<txPower>

Write Protect

The HART specification allows a field device to be in write protect mode. When in this mode, certain HART write commands

must be disallowed. The mote serial API includes a command to enable and disable writesetParameter<writeProtect>

protection of mote-related values. The following table lists the commands that are write protected when write protect mode is

enabled.

HART CMD Description

768 Write join key

770 Request active advertising

773 Write Network ID

797 Write radio power output

805 Write CCA mode

809 Write packet time-to-live

http://www.linear.com/docs/41893

SmartMesh WirelessHART User's Guide Page of 129 135

1.

1.

2.

2.

Change Counter and Change Configuration Flag

The mote maintains an internal variable that it increments each time specific HCF_SPEC-155 commands ischangeCounter

successfully executed. For a list of commands that trigger the , refer to the Wireless Command SpecificationchangeCounter

(HCF_SPEC-155).

The counter is 16 bits. It is initialized to 0 when the mote reboots and rolls over back to 0 after reachingchangeCounter

0xFFFF. The counter can be retrieved via the command. Additionally, the mote maintains angetParameter<moteStatus>

internal change configuration flag (CCF) that it sets whenever it increments the variable. When the bit is set, a changeCounter

 event is generated. The mote’s CCF is ORed into hart status bytes sent with every packet. In particular, the CCFconfigChanged

will be set in response to the request that caused the flag to be set.

The mote clears the CCF bit when the event is acknowledged. To implement the HART change counter and theconfigChanged

CCF, the OEM microprocessor should add its own change counter to the mote's change counter for reporting in command 0.

It should also set the CCF whenever it receives a event from the mote.configChanged

CMD 42 Device Reset

When the OEM device receives CMD 42 Reset Device, it should use the disconnect command (not the reset command) to

request that the mote leave the network. With the command the mote informs its neighbors that it is about todisconnect

become unavailable before it resets. The command simply resets the mote without notice. For more information onreset

disconnecting from the network, see .Connecting and Disconnecting

5.8.3 Efficiently Checking for Manager-Originated Services

The OEM microprocessor can efficiently stay up to date on manager-originated services because the mote proactively sends a

 packet when services are added, deleted, or modified. However, the OEM microprocessor always has theserviceIndication

option of polling the service table to verify service state. Manager-originated services are defined by HART to have service ID

between 0x80 and 0xFF. Although network managers will specifically use ID 0x80 for maintenanceSmartMesh WirelessHART

service, network managers from other vendors may not allocate manager-originated services in a read-friendly order.

To efficiently check the service table for manager-originated services:

Determine the number of active manager requested services.

Read the number of services in use—issue an API command with HART command 800.hartPayload

Subtract the number of device-originated services (number of services the OEM microprocessor has

requested, which will have service IDs between 0x00 and 0x7F).

Read through the service table, starting with 0x80 (128) and iterate upwards through the service IDs until either the

number of active manager services has been found, or the end of the table (ID 0xFF) has been reached.

The process described above works very efficiently with network managers. Again, the aboveSmartMesh WirelessHART

solution for iterating through the manager-originated portion of the service table is not required, but is offered in the event an

OEM should choose to use it.

SmartMesh WirelessHART User's Guide Page of 130 135

5.9 Factory Default Settings

The mote ships with the following factory default settings. The mote can be returned to factory settings by using the

 mote CLI command, or the mote API command.mclearnv clearNV

Parameter Default Value

MAC Address Use 8-byte UID value from OTP

Transmit Power +8 dBm

Network ID 1229

Join Key 0x445553544E4554574F524B53524F434B

Nonce Counter 0

Join Duty Cycle 5%

Power Source Battery

Discharge Current 1000 µA (1 mA)

Discharge Time 42949667295 1/32 ms (0xFFFFFFFF)

Recover Time 0

TTL 127

HART Antenna Gain +2 dBi

OTAP Lockout 0

SmartMesh WirelessHART User's Guide Page of 131 135

5.10 Master vs. Slave

5.10.1 Modes

Motes have two modes that control joining and command termination behavior:

 - a demo mode enabled on the motes in . In this mode, the mote runs an application that generatesMaster Starter kits

sample data and controls joining. The mote API is disabled in mode.master

- the default mode for LTC58xx and LTP59xx motes. The mote expects a serially connected device to terminateSlave

commands and control join - by default the mote does not join a network on its own. The API is enabled in slave

mode, and the device expects a serially attached application such as APIExplorer or an external microcontroller to

connect to it.

The mode can be set through the CLI command, and persists through reset (it is non-volatile).set i.e.

If is enabled via (SmartMesh IP only), a mote will join the network without requiring aautojoin SetParameter slave

serial application to issue a command in order to simplify external microcontroller logic. Do not use the join

 parameter with a mote in mode, as it may become unresponsive in some revisions of software.autojoin master

5.10.2 LEDs

For motes () in mode, the STATUS_0 LED will begin blinking immediately upon power-up, as the mote willDC9003 master

start searching automatically. When the mote has joined, STATUS_0 and STATUS_1 LEDs will both be illuminated. In slave

mode, no LEDs light - this should not be mistaken for a dead battery.

LEDs of a board will only light if the LED_EN jumper is shorted. Master mode LED support available inDC9003

SmartMesh WirelessHART mote version >= 1.1.2.

5.10.3 Master Behavior

The mode application is not WirelessHART compliant:master

It does not follow the requirementsPre-join configuration

It generates temperature reports that do not contain status or extended status bytes

http://www.linear.com/designtools/software/#Dust
http://www.linear.com/demo/?demo_board=DC9003
http://www.linear.com/demo/?demo_board=DC9003

SmartMesh WirelessHART User's Guide Page of 132 135

Only temperature and packet generation are available in the WirelessHART Master mode application.By default, the application

will sample and send temperature reports every 30 s. An example of the format of the data notification payload field is as

follows:

Non-HART

Data

OAP

Header

Notification

type

Channel Timestamp Rate #

samples

Sample

size

Sample(s)

FC12 0X YY 05 00 FF 01

05

00 00 00 00 53 16 60 93

00 04 e5 77

00 00

75 30

01 10 0ae0

OAP Header

Control: 00 (unacknowledged request, normal sync) or 02 (unacknowledged request, resync)

ID: YY (ID can be ignored for unacknowledged data)

Command: 05 (notification)

OAP Payload (Notification)

Type: 00 (raw samples)

Channel: FF 01 05 (tag, length, value=5, i.e. temperature)

UTC Timestamp: 00 00 00 00 53 16 60 93, 00 04 e5 77 (seconds into epoch, microseconds)

Rate: 00 00 75 30 (30000 milliseconds)

Number of samples: 01

Sample size: 10 (16 bits)

Samples: 0a e0 (2784 100ths of a °C)

Changing Reporting Rate / Enabling Packet Generator

Both temperature and packet generation can be enabled/disabled, and the rate set by encapsulating OAP messages in the

payload (prepended with 00 00 FC 12) of a Manager API. See the for details on OAP.sendRequest SmartMesh IP Tools Guide

http://www.linear.com/docs/42453

SmartMesh WirelessHART User's Guide Page of 133 135

5.10.4 Switching To Slave Mode

By default, motes in starter kits (& and) and are configured for mode. To read the currentDC9000 DC9021 DC9007 master

configuration, connect the mote to a computer via a USB cable and use the mote CLI command. To configure the moteget

for mode, use the mote CLI command:slave set

Use the command to see the current mode:get mode

> get mode

master

Use the command to switch to mode:set mode slave

> set mode slave

> reset

You must reset the mote for the mode change to take effect. Once set, the mode persists through reset.

5.10.5 Switching To Master Mode

To read the current configuration, connect the mote to a computer via a USB cable and use the CLI command. Toget mode

configure the mote for mode, use the CLI command.master set mode

Use the command to see the current mode:get mode

> get mode

slave

Use the command to set the mote to modeset mode master :

> set mode master

> reset

You must reset the mote for the command to take effect. Once set, the mode persists through reset.set mode

http://www.linear.com/demo/?demo_board=DC9000
http://www.linear.com/demo/?demo_board=DC9021
http://www.linear.com/demo/?demo_board=DC9007

SmartMesh WirelessHART User's Guide Page of 134 135

Trademarks

are trademarks of Dust Networks, Inc. The Dust Networks logo, Dust, DustEterna, Mote-on-Chip, and SmartMesh IP,

Networks, and SmartMesh are registered trademarks of Dust Networks, Inc. LT, LTC, LTM and are registered

All third-party brand and product names are the trademarks of their respective ownerstrademarks of Linear Technology Corp.

and are used solely for informational purposes.

Copyright

This documentation is protected by United States and international copyright and other intellectual and industrial property

laws. It is solely owned by Linear Technology and its licensors and is distributed under a restrictive license. This product, or

any portion thereof, may not be used, copied, modified, reverse assembled, reverse compiled, reverse engineered, distributed,

or redistributed in any form by any means without the prior written authorization of Linear Technology.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)

(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015 (b)(6/95) and DFAR 227.7202-3(a), and any and all similar and

successor legislation and regulation.

Disclaimer

This documentation is provided “as is” without warranty of any kind, either expressed or implied, including but not limited to,

the implied warranties of merchantability or fitness for a particular purpose.

This documentation might include technical inaccuracies or other errors. Corrections and improvements might be

incorporated in new versions of the documentation.

Linear Technology does not assume any liability arising out of the application or use of any products or services and

specifically disclaims any and all liability, including without limitation consequential or incidental damages.

Linear Technology products are not designed for use in life support appliances, devices, or other systems where malfunction

can reasonably be expected to result in significant personal injury to the user, or as a critical component in any life support

device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or

system, or to affect its safety or effectiveness. Linear Technology customers using or selling these products for use in such

applications do so at their own risk and agree to fully indemnify and hold Linear Technology and its officers, employees,

subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or

unauthorized use, even if such claim alleges that Linear Technology was negligent regarding the design or manufacture of its

products.

Linear Technology reserves the right to make corrections, modifications, enhancements, improvements, and other changes to

its products or services at any time and to discontinue any product or service without notice. Customers should obtain the

latest relevant information before placing orders and should verify that such information is current and complete. All products

are sold subject to Dust Network's terms and conditions of sale supplied at the time of order acknowledgment or sale.

SmartMesh WirelessHART User's Guide Page of 135 135

Linear Technology does not warrant or represent that any license, either express or implied, is granted under any Linear

Technology patent right, copyright, mask work right, or other Linear Technology intellectual property right relating to any

combination, machine, or process in which Linear Technology products or services are used. Information published by Linear

Technology regarding third-party products or services does not constitute a license from Linear Technology to use such

products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party

under the patents or other intellectual property of the third party, or a license from Linear Technology under the patents or

other intellectual property of Linear Technology.

Dust Networks, Inc is a wholly owned subsidiary of Linear Technology Corporation.

© Linear Technology Corp. 2012-2015 All Rights Reserved.

	About This Guide
	Related Documents
	Conventions Used
	Revision History

	SmartMesh Glossary
	The SmartMesh WirelessHART Network
	Introduction
	Network Overview
	SmartMesh Network Features

	Network Formation
	Mote Joining
	Discovery
	Mote ID

	Bandwidth and Latency
	Base Bandwidth
	Services
	Cascading Links
	Downstream Bandwidth
	Fast Services on the Pipe

	Data Traffic
	Security
	Security Layers
	Security Modes

	The SmartMesh WirelessHART Manager
	Introduction
	Embeddable Manager
	Packaged Manager
	Steps in Designing a Manager Client Application
	Manager vs. Gateway

	Manager Interfaces
	Wired Interfaces
	10/100Base-T Ethernet Interface
	Serial 2 Interface
	Serial 1 Interface

	Software Interfaces
	Command Line Interface (CLI)
	Application Programming Interface (API)
	Admin Toolset

	Connecting to the Manager
	Connecting the Manager Directly to a Windows Computer
	Connecting to the Manager on the LAN
	Accessing Admin Toolset
	Configuring the Firewall
	Changing the CLI Password

	Administering the Manager
	Root Access
	Network ID
	Exchange Network ID command

	Network Time
	Software Licensing

	Network Activity
	Network Structure and Formation
	Communicating with Motes
	Network Health
	Health Reports
	Optimization

	Network Bandwidth Control
	Access Control
	Network Security
	Common Join Key Mode
	ACL Mode
	Quarantine Mode
	Updating a Mote's Join Key

	Limiting the Maximum Number of Motes

	Over-the-Air-Programming
	Background
	OTAP through a Serial Port
	OTAP Using Admin Toolset
	OTAP via Manager API
	Troubleshooting an Unsuccessful OTAP

	Restoring Manager Factory Default Settings
	Channel Blacklisting
	INI Files
	system.ini
	platform.ini
	dcc.ini
	Modifying ini variables
	Default dcc.ini
	Default platform.ini
	Default system.ini

	Datalog Utility
	Overview
	Using Datalog
	Starting a Capture
	Stopping a Capture
	Capture Status
	File Transfer
	Configuration

	Datalog Output
	Format of Data Records
	Format of Trailer
	Converting captured data to ASCII
	Usage

	How to Restart Datalog on System Reboot
	Overview
	Detect an in-progress capture
	Prevent deleting any previous captures
	Startup scripts

	Configuring PPP on Serial 1
	Switching Serial Port Modes
	PPP Configuration
	Linux Client Configuration
	Windows Client Configuration
	Assembling a 9-pin D-SUB Adapter for Serial 1

	Manager Redundancy
	Overview
	Configuration
	Advanced configuration
	Firewall configuration

	The SmartMesh WirelessHART Mote
	Introduction
	Steps in a Mote Design

	Mote State Machine
	Joining
	OEM Microprocessor Boot
	Mote Boot
	Pre-join Configuration
	Network Joining

	Services
	Service Characteristics and Timing Parameters
	Service Types
	Non-Service Bandwidth Control
	Using the Services API
	Service-related API Commands
	Service Table

	Maintenance
	Maintenance Service Origination
	Using Maintenance Service

	Publish
	Publish Service Origination
	Using the Publish Service
	Handling Reductions in Available Publish Bandwidth

	Block Transfer
	Block Transfer Service Origination
	Using the Block Transfer Service

	Events
	Event Service Origination

	Communication
	Best-Effort Communication
	Reliable Communication
	Downstream Reliable Retries

	Events and Alarms
	Timestamps
	WirelessHART-Compliant Applications
	Command Termination
	Mote-terminated Commands
	HCF_SPEC-155 Commands
	Microprocessor-terminated Commands
	API support
	dataReceived Notification, send Command
	hartPayload Command
	Typical Error Handling
	Example of an End-to-end Transaction

	Key WirelessHART Command Support
	HART Join Shed Time
	Wireless Operation Mode and Join Process Status
	Device Status Support
	CMD 770 Request Activate Advertising
	CMD 771 Force Join Mode
	CMD 797 Write Radio Power Output and CMD 798 Read Radio Power Output
	Write Protect
	Change Counter and Change Configuration Flag
	CMD 42 Device Reset

	Efficiently Checking for Manager-Originated Services

	Factory Default Settings
	Master vs. Slave
	Modes
	LEDs
	Master Behavior
	Changing Reporting Rate / Enabling Packet Generator

	Switching To Slave Mode
	Switching To Master Mode

