

36mm LED Pixels

Created by Phillip Burgess

https://learn.adafruit.com/36mm-led-pixels

Last updated on 2022-12-01 01:50:25 PM EST

©Adafruit Industries Page 1 of 12

3

4

4

6

8

10

Table of Contents

Overview

Project Ideas

Wiring

Powering

Code

• Installation

• Using the Library

Troubleshooting

©Adafruit Industries Page 2 of 12

Overview

RGB Pixels are digitally-controllable lights you can set to any color, or animate. Each

pixel contains four RGB LEDs and a controller chip in a sturdy metal housing. The

pixel is then 'flooded' with epoxy to make it waterproof. These are fairly large pixels

but they have a lot of nice mounting options, such as two metal flanges on the side

and a 0.15"/4mm diameter hole in the middle so you can screw them directly onto a

surface. They're typically used to make outdoor signs. Compared to our other LED

dots, these are much bigger and much brighter, good for larger scale installations.

At 12 volts, they draw a maximum of 120 milliamps per pixel: 40 mA each for red,

green and blue.

The LED pixels are spaced along a strand of ribbon cable, with about 3 inches (75mm)

between pixels. If additional distance is needed you can cut the ribbon cable and

solder 4 wires to extend the gap to the desired length.

©Adafruit Industries Page 3 of 12

Each pixel contains a small microchip. The WS2801 LED driver chip is custom

designed for this purpose. We provide an Arduino library for communicating with the

pixels (explained in subsequent pages), but if you want to write your own code for

other microcontrollers, they’re very easy to communicate with using an SPI-like

protocol. For each pixel, one “shifts out” 24 bits of color information — the first data

out corresponds to the pixel closest to the microcontroller. To write colors to 10 LEDs,

you would issue 240 bytes (10 * 24). Following the data, a 500 microsecond pause

will then “latch” the data and display the new LED colors.

Project Ideas

These pixels could be used for stuff like…

An LED coffee table (this one was “hand made” some time ago…now you could simply

use a long strand of our LED pixels and skip the complicated wiring and driver parts):

Signs and displays:

Wiring

The “magic” of these pixels is that they're digitally controlled…even though there are

only two control lines, you can have as many pixels as you’d like in a single long

strand, yet each remains independently controllable.

Though it looks like the 4-conductor ribbon cable is continuous, it isn't! The pixels

have a distinct “in” and “out” side. Data from the microcontroller arrives on the input

©Adafruit Industries Page 4 of 12

side, where it’s received by the driver chip. The output side then connects to the input

of the next pixel, all the way down the line.

When connecting these pixels to a microcontroller, make sure you're connecting to

the strand's input pins! On these large pixels, it's easy to spot: examine the circuit

board, looking for the "IN" label and an arrow indicating the direction of data flow. If

connecting multiple strands together, make sure the output of one strand goes to the

input of the next.

The pixel strands include plugs for joining multiple strands, plus two wires for

connecting power:

Wiring is pretty easy since there are only 4 wires. The only important thing is that you

should not try to power the LED strand from the Arduino's 5V line — these LEDs

require a dedicated 12V source separate from the microcontroller.

©Adafruit Industries Page 5 of 12

Use this diagram with the red wire going to +12V from the power supply, green (serial

clock) to Arduino digital pin 3, yellow (serial data) to digital pin 2, and black to both

the ground connection on the power supply and any available GND pin on the

Arduino.

Our Arduino library can use any two pins, but the examples are written to use pins 2

and 3 as above.

Powering

When running a lot of LEDs, it’s important to keep track of power usage. Individual

LEDs don't get very hot or use tons of power, but they add up fast!

Each single 36mm RGB LED pixel can draw up to 120mA from a 12V supply. That

means a strand of 20 can use up to 2.4 Amps. That’s a peak rate, which assumes that

all the LEDs are on at full brightness. If most of the LEDs are kept dim or off (as when

animating patterns), the average power usage can be 1/3 this or less.

©Adafruit Industries Page 6 of 12

We suggest a nice switching supply for driving LED pixels, such as our 12 Volt 5 Amp

supply (http://adafru.it/352) . For larger projects, a slightly modified ATX computer

power supply () can provide 10 Amps to power upwards of 80 pixels!

Since the 36mm pixels are powered by 12V but use 3-5V signaling, make sure you

don't accidentally connect the 12V to your microcontroller — this will destroy it! For

that reason, the power lines are separated out. Use something like a 2.1mm DC

terminal block adapter (http://adafru.it/368) so that you can directly plug in our 12V

adapter.

The wires on the 3-JST SM connector are then connected to your microcontroller:

black is ground, yellow is data and green is clock.

©Adafruit Industries Page 7 of 12

http://www.adafruit.com/products/352
http://www.adafruit.com/products/352
http://www.instructables.com/pages/search/search.jsp?ie=ISO-8859-1&q=ATX
http://www.instructables.com/pages/search/search.jsp?ie=ISO-8859-1&q=ATX
https://www.adafruit.com/products/368
https://www.adafruit.com/products/368

Code

Installation

To download the required Arduino library, use the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit WS2801 library and install it

©Adafruit Industries Page 8 of 12

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

After installing the Adafruit_WS2801 library, you should be able to access the sample

code by navigating through menus in this order:

File→Sketchbook→Libraries→Adafruit_WS2801→strandtest

Using the Library

Let's look through the strandtest example code. To use the library in an Arduino

sketch, you'll first need to globally declare a WS2801 object to talk to the strip. It is

invoked with three variables: the number of pixels and the data and clock pins:

int dataPin = 2;
int clockPin = 3;

// Set the first variable to the NUMBER of pixels. 25 = 25 pixels in a row
Adafruit_WS2801 strip = Adafruit_WS2801(25, dataPin, clockPin);

The example code was written for multiple types of pixels we carry, some of which

come in different strand lengths. Since the 36mm strands contain 20 (rather than 25)

pixels, feel free to edit the declaration for 20 pixels:

Adafruit_WS2801 strip = Adafruit_WS2801(20, dataPin, clockPin);

Next, we initialize the strip in the setup() procedure:

void setup() {

 strip.begin();

 // Update LED contents, to start they are all 'off'
 strip.show();
}

begin() initializes the library, while show() refreshes the displayed colors of the LEDs.

You'll need to call show() after changing any pixel colors to see this reflected in the

LEDs. This way you can change the entire strip at one time (it takes the same amount

of time to change one pixel as it does for an entire strip).

Let's look inside an example function, colorWipe(). This creates a 'chase' sequence

that fills the strip with a color. It is basically a loop that increments through every pixel

(which you can query with the numPixels() function) and sets the color of each

©Adafruit Industries Page 9 of 12

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

(incremented with i) to the value passed (c — colors are expressed as a 32-bit variable

type, though only the bottom 24 bits are used). The strip output is then updated

with show(). Finally there is some delay (otherwise this would happen instantly).

Below that is a helper function that converts a color from separate 8-bit red, green

and blue values into a combined 24-bit value (suitable for passing to colorWipe()). The

brightness range is from 0 (off) to 255 (max brightness).

// fill the dots one after the other with said color
// good for testing purposes
void colorWipe(uint32_t c, uint8_t wait) {
 int i;

 for (i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, c);
 strip.show();
 delay(wait);
 }
}

/* Helper functions */
// Create a 24 bit color value from R,G,B
uint32_t Color(byte r, byte g, byte b)
{
 uint32_t c;
 c = r;
 c <<= 8;
 c |= g;
 c <<= 8;
 c |= b;
 return c;
}

For example, in the loop() function we call colorWipe(Color(255, 0, 0), 50) which will

fill the strand with full-brightness red light, pausing about 50 milliseconds between

pixels.

 colorWipe(Color(255, 0, 0), 50); // red fill
 colorWipe(Color(0, 255, 0), 50); // green fill
 colorWipe(Color(0, 0, 255), 50); // blue fill

Troubleshooting

Many support issues arise from eager users getting ahead of themselves, changing

the code and wiring before confirming that all the pieces work in the standard

configuration. We recommend always starting out with the examples as shown. Use

the pinouts and wiring exactly as in the tutorial, and run the stock, unmodified

“strandtest” example sketch. Only then should you start switching things around.

©Adafruit Industries Page 10 of 12

Here are the most common issues and solutions…

The pixels are wired and powered exactly as in the

tutorial, the sketch compiles and uploads successfully, but

nothing happens.

Double-check all wiring. Are the clock and data wires swapped? Is ground

connected to the Arduino?

Confirm the Arduino is connected to the INPUT end of the strand.

Check power supply polarity and voltage. Are + and - swapped? If you have a

multimeter, confirm 12V DC output (±10%) from the power supply.

Are the power wires at the opposite end of the strand insulated or trimmed?

They should not be left exposed where they might make contact with metal,

or each other.

Is the correct board type selected in the Arduino Tools→Board menu?

A few LEDs randomly turn on when power is applied, but

then nothing happens.

The power supply is probably OK. Check for any of the following:

Double-check all wiring. Are the clock and data wires swapped? Is ground

connected to the Arduino?

Confirm the Arduino is connected to the INPUT end of the strand.

Is the correct board type selected in the Arduino Tools→Board menu?

Did the strandtest code successfully compile and upload?

Only the first few LEDs respond. The rest remain off or

flicker randomly.

Confirm that the number of LEDs in the Adafruit_WS2801() constructor match

the number of LEDs in the strand (both will be 20 if using the strandtest

example and a single strand of LEDs).

The LEDs flicker randomly, not the way they’re

programmed to.

Are the clock and data wires swapped? Is ground connected to the Arduino?

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 11 of 12

“White” LEDs are showing pink instead.

This can happen when trying to power too long of a strand from one end.

Voltage will drop along the length of the strand and the furthest pixels will

“brown out.” Connect power to 20 pixel strand.

Sketch will not compile: error message is

“Adafruit_WS2801 does not name a type”

Confirm the library is unzipped prior to installation.

Confirm the library is properly named and located. The folder should be

called Adafruit_WS2801, and placed inside your personal Documents/

Arduino/Libraries folder — inside the Arduino application folder!

After installation, the Arduino IDE needs to be restarted for new libraries to

be used.

•

•

•

•

©Adafruit Industries Page 12 of 12

	36mm LED Pixels
	Table of Contents
	Overview
	Project Ideas
	Wiring
	Powering
	Code
	Troubleshooting

	Overview
	Project Ideas
	Wiring
	Powering
	Code
	Installation
	Using the Library
	Troubleshooting
	The pixels are wired and powered exactly as in the tutorial, the sketch compiles and uploads successfully, but nothing happens.
	A few LEDs randomly turn on when power is applied, but then nothing happens.
	Only the first few LEDs respond. The rest remain off or flicker randomly.
	The LEDs flicker randomly, not the way they’re programmed to.
	“White” LEDs are showing pink instead.
	Sketch will not compile: error message is “Adafruit_WS2801 does not name a type”

