

RELIABILITY REPORT FOR MAX9672ETI+ PLASTIC ENCAPSULATED DEVICES

October 30, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Richard Aburano
Quality Assurance
Manager, Reliability Operations

Conclusion

The MAX9672ETI+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description V.Quality Assurance Information
- II.Manufacturing Information
- VI.Reliability Evaluation
- III.Packaging Information
-Attachments

IV.Die Information

I. Device Description

A. General

The MAX9672/MAX9673/MAX9674 output 12/14/16 voltage references for gamma correction in TFT LCDs and one voltage reference for VCOM. Each gamma reference voltage has its own 10-bit DAC and buffer to ensure a stable voltage. The VCOM reference voltage has its own 10-bit DAC and an amplifier to ensure a stable voltage when critical levels and patterns are displayed. The MAX9672/MAX9673/MAX9674 feature integrated multiple-time programmable (MTP) memory to store gamma and VCOM values on the chip, eliminating the need for external EEPROM. The MAX9672/MAX9673/MAX9674 support up to 100 write operations to the on-chip nonvolatile memory. The gamma outputs can drive 200mA peak transient current and settle within 1µs. The VCOM output can provide 600mA peak transient current and also settles within 1µs. The analog supply voltage range extends from 2.7V to 3.6V. Gamma values and the VCOM value are programmed into registers through the I²C interface.

II. Manufacturing Information

10-Bit, Programmable Gamma Reference Systems with MTP for TFT LCDs A. Description/Function: B. Process: S45 C. Number of Device Transistors: 4548 D. Fabrication Location: California, Texas or Japan

filler

Thailand

July 25, 2009

- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	28-pin TQFN 5x5
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (1 mil dia.)
F. Mold Material:	Epoxy with silica fi
G. Assembly Diagram:	#05-9000-3808
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	47°C/W
K. Single Layer Theta Jc:	1.7°C/W
L. Multi Layer Theta Ja:	29°C/W
M. Multi Layer Theta Jc:	1.7°C/W

IV. Die Information

A. Dimensions:	99 X 101 mils
B. Passivation:	Si ₃ N ₄ /SiO ₂ (Silicon nitride/ Silicon dioxide)
C. Interconnect:	AI/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization:	None
E. Minimum Metal Width:	Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
F. Minimum Metal Spacing:	Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V.	Quality	Assurance	Information
----	---------	-----------	-------------

A. Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \text{ x} 4340 \text{ x} 48 \text{ x} 2} \text{ (Chi square value for MTTF upper limit)} \\ (where 4340 = \text{Temperature Acceleration factor assuming an activation energy of 0.8eV)} \\ \lambda = 22.9 \text{ x } 10^{-9} \\ \lambda = 22.9 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S45 Process results in a FIT Rate of 0.49 @ 25C and 8.49 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The DV26 die type has been found to have all pins able to withstand a transient pulse of:

 HBM:
 +/-2500V per JEDEC JESD22-A114

 CDM:
 +/-750V per JEDEC JESD22-C101

 MM:
 +/-250V per JEDEC JESD22-A115

Latch-Up testing has shown that this device withstands a current of +/- 250mA and Vcc Overvoltage per JESD78.

Table 1 Reliability Evaluation Test Results

MAX9672ETI+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	48	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
-	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data