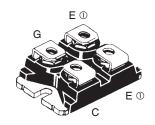
GenX3[™] 1200V IGBT w/ Diode


IXGN82N120C3H1

High-Speed PT IGBT for 20-50 kHz Switching

V _{CES}	=	1200V
C110	=	58A
V _{CE(sat)}	≤	3.9V

SOT-227B, miniBLOC E153432

G = Gate, C = Collector, E = Emitter

① either emitter terminal can be used as

Main or Kelvin Emitter

F	ea	tu	re	S

- Optimized for Low Switching Losses
- Square RBSOA
- High Current Capability
- Isolation Voltage 2500 V~
- Anti-Parallel Ultra Fast Diode
- International Standard Package

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- SMPS
- PFC Circuits
- Welding Machines
- Lamp Ballasts

Symbol	Test Conditions	5	Maximum Ratings		
V _{CES}	$T_{J} = 25^{\circ}\text{C to } 15^{\circ}$	0°C	1200	V	
V _{CGR}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}$	0° C, $R_{GE} = 1M\Omega$	1200	V	
V _{GES}	Continuous		±20	V	
V _{GEM}	Transient		±30	V	
I _{C25}	T _c = 25°C		130	A	
I _{C110}	$T_{\rm C} = 110^{\circ} C$		58	Α	
I _{F110}	$T_{\rm C}^{\circ} = 110^{\circ} \rm C$		42	Α	
I _{CM}	$T_{c} = 25^{\circ}C$, 1ms		500	Α	
SSOA	$V_{GE} = 15V, T_{VJ} =$	125°C, R _G = 3Ω	I _{CM} = 164	A	
(RBSOA)	Clamped Inductive Load		$V_{CE} \le V_{CES}$		
P _c	T _C = 25°C		595	W	
T _J			-55 +150	°C	
\mathbf{T}_{JM}			150	°C	
T _{stg}			-55 +150	°C	
V _{ISOL}	50/60Hz	t = 1min	2500	V~	
	$I_{ISOL} \le 1 mA$	t = 1s	3000	V~	
M _d	Mounting Torque	9	1.5/13	Nm/lb.in.	
-	Terminal Connec	tion Torque	1.3/11.5	Nm/lb.in.	
Weight			30	g	

			teristic Values Typ. Max.		
V _{GE(th)}	$I_{C} = 1 \text{mA}, V_{CE} = V_{GE}$	3.0		5.0	V
I _{CES}	$V_{CE} = V_{CES}$, $V_{GE} = 0V$, Note 1 $T_{J} = 125^{\circ}C$			50 6	μA mA
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±200	nΑ
V _{CE(sat)}	$I_{\rm C}=82A,V_{\rm GE}=15V,{\rm Note}2$		3.3	3.9	V

Symbol (T ₁ = 25°C,	SymbolTest ConditionsCharacterist $(T_{\perp} = 25^{\circ}C, \text{ Unless Otherwise Specified})$ Min. Typ.			c Values ∣ Max.
g _{fs}	I _C = 60A, V _{CE} = 10V, Note 2	38	62	S
C _{ies}			7900	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1 MHz$		685	pF
C _{res}			197	pF
$Q_{g(on)}$			340	nC
Q_{ge}	$I_{\rm C}$ = 82A, $V_{\rm GE}$ = 15V, $V_{\rm CE}$ = 0.5 • $V_{\rm CES}$		55	nC
Q _{gc}			145	nC
t _{d(on)}			30	ns
t _{ri}	Inductive load, T _J = 25°C		77	ns
E _{on}	$I_{\rm C} = 82A, V_{\rm GE} = 15V$		5.0	mJ
t _{d(off)}	$V_{CE} = 0.5 \cdot V_{CES}, R_{G} = 2\Omega$		194	ns
t _{fi}	Note 3		100	ns
E _{off}			2.5	5.0 mJ
t _{d(on)}			32	ns
t _{ri}	Inductive load, T _J = 125°C		80	ns
E _{on}	$I_{\rm C}=82A, V_{\rm GE}=15V$		6.8	mJ
t _{d(off)}	$V_{CE} = 0.5 \cdot V_{CES}, R_{G} = 2\Omega$		230	ns
t _{fi}	Note 3		270	ns
E _{off}			4.0	mJ
R _{thJC}				0.21 °C/W
R _{thCK}			0.05	°C/W

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	1.240	1.255	31.50	31.88	
В	.307	.323	7.80	8.20	
С	.161	.169	4.09	4.29	
D E	.161	.169	4.09	4.29	
E	.161	.169	4.09	4.29	
F	.587	.595	14.91	15.11	
G	1.186	1.193	30.12	30.30	
Н	1.496	1.505	38.00	38.23	
J	.460	.481	11.68	12.22	
K	.351	.378	8.92	9.60	
L	.030	.033	0.76	0.84	
М	.496	.506	12.60	12.85	
N	.990	1.001	25.15	25.42	
0	.078	.084	1.98	2.13	
Р	.195	.235	4.95	5.97	
Q R	1.045	1.059	26.54	26.90	
	.155	.174	3.94	4.42	
S	.186	.191	4.72	4.85	
T	.968	.987	24.59	25.07	
U	002	.004	-0.05	0.1	

Reverse Diode (FRED)

Symbol Test Conditions $(T_J = 25^{\circ}C, Unless Otherwise Specified)$			Char Min.	acteristic Typ.	Values Max.	
V _F	$I_{\rm F} = 60A, V_{\rm GF} = 0V, \text{ Note 1}$				2.5	V
•	i de	$T_J = 150^{\circ}C$		1.4	1.8	V
I _{RM}	$\begin{cases} I_{F} = 60A, V_{GE} = 0V, \\ -di_{F}/dt = 200A/\mu s, V_{R} = 300V \end{cases}$	T _J = 100°C		8.3		Α
t _{rr}	$\int -di_{F}/dt = 200A/\mu s, V_{R} = 300V$			140		ns
R _{thJC}					0.42 °C	C/W

Notes:

- 1. Part must be heatsunk for high-temp Ices measurement.
- 2. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 3. Switching times & energy losses may increase for higher $V_{CF}(Clamp)$, T_{I} or R_{G} .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

