8-Mbit (512K x 16) Pseudo Static RAM ### **Features** Advanced low-power MoBL[®] architecture • High speed: 55 ns, 70 ns • Wide voltage range: 2.7V to 3.3V Typical active current: 2 mA @ f = 1 MHz Typical active current: 11 mA @ f = f_{MAX} · Low standby power Automatic power-down when deselected ### Functional Description[1] The CYK512K16SCCA is a high-performance CMOS pseudo static RAM (PSRAM) organized as 512K words by 16 bits that supports an asynchronous memory interface. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL) in portable applications such as cellular telephones. The device can be put into standby mode reducing power consumption dramatically when deselected (CE1 LOW, CE2 HIGH or both BHE and BLE are HIGH). The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when: deselected (CE $_1$ HIGH, CE $_2$ LOW), $\overline{\rm OE}$ is deasserted HIGH, or during a write operation (Chip Enabled and Write Enable WE LOW). Reading from the device is accomplished by asserting the Chip Enables (CE₁ LOW and CE₂ HIGH) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table for a complete description of read and write modes. Note 1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com. #### 48-Ball FBGA **Top View** 1 2 4 3 5 ### **Product Portfolio**^[5] | | | | | | | | Power Di | ssipation | | | |---------------|------|------------------------------|------|-------|---------------------|-----------|-----------------------|-----------|---------------------|----------| | | ١ , | /cc Range | е | | (| Operating | , I _{CC} (mA |) | Standb | ov. Iepa | | | | / _{CC} Range
(V) | | Speed | f = 1 | MHz | f = f | MAX | (μ. | | | Product | Min. | Тур. | Max. | (ns) | Typ. ^[5] | Max. | Typ. ^[5] | Max. | Typ. ^[5] | Max. | | CYK512K16SCCA | 2.7 | 3.0 | 3.3 | 55 | 2 | 5 | 11 | 22 | 55 | 100 | | | | | | 70 | | | | 17 | | | #### Notes: - DNU pins are to be left floating or tied to V_{SS}. Ball G2, H6 are the address expansion pins for the 16-Mbit and 32-Mbit densities respectively. - 4. NC "no connect"—not connected internally to the die. - 5. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} (typ) and T_A = 25°C. ### **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-40°C to +85°C Supply Voltage to Ground Potential -0.4V to 4.6V | DC Input Voltage ^[6, 7, 8] | 0.4V to 3.7V | |--|--------------| | Output Current into Outputs (LOW) | 20 mA | | Static Discharge Voltage(per MIL-STD-883, Method 3015) | > 2001V | | Latch-up Current | > 200 mA | ### **Operating Range** | Range | Ambient
Temperature (T _A) | V _{CC} | |------------|--|-----------------| | Industrial | −25°C to +85°C | 2.7V to 3.3V | ### DC Electrical Characteristics (Over the Operating Range)^[5, 6, 7, 8] | | | | | CYK51 | 12K16SC | CA-55 | CYK51 | 2K16SC | CA-70 | | |------------------|---|--|--|--------------------------|----------------------------|-----------------------|--------------------------|----------------------------|-----------------------|------| | Parameter | Description | Test Co | onditions | Min. | Typ. ^[5] | Max. | Min. | Typ. ^[5] | Max. | Unit | | V _{CC} | Supply Voltage | | | 2.7 | 3.0 | 3.3 | 2.7 | | 3.3 | V | | V _{OH} | Output HIGH Voltage | $I_{OH} = -0.1 \text{ mA}$ | | V _{CC} – 0.4 | | | V _{CC} – 0.4 | | | V | | V _{OL} | Output LOW Voltage | $I_{OL} = 0.1 \text{ mA}$ | | | | 0.4 | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | | 0.8 *
V _{CC} | | V _{CC} + 0.4 | 0.8 *
V _{CC} | | V _{CC} + 0.4 | V | | V _{IL} | Input LOW Voltage | F = 0 | | -0.4 | | 0.4 | -0.4 | | 0.4 | V | | I _{IX} | Input Leakage
Current | $GND \le V_{IN} \le V_{0}$ | CC | -1 | | +1 | -1 | | +1 | μА | | I _{OZ} | Output Leakage
Current | GND ≤ V _{OUT} ≤
Disabled | V _{CC} , Output | -1 | | +1 | -1 | | +1 | μА | | I _{CC} | V _{CC} Operating | $f = f_{MAX} = 1/t_{RC}$ | $V_{CC} = 3.3V$, | | 11 | 22 | | 11 | 17 | mA | | | Supply Current | f = 1 MHz | I _{OUT} = 0 mA,
CMOS level | | 2 | 5 | | 2 | 5 | | | I _{SB1} | Automatic CE ₁ Power-down Current —CMOS Inputs | | ² V, V _{IN} ≤ 0.2V,
s and Data Only), | | 100 | 400 | | 100 | 400 | μА | | I _{SB2} | Automatic CE ₁ Power-down Current —CMOS Inputs | $\overline{CE} \ge V_{CC} - 0.2$
$V_{IN} \ge V_{CC} - 0.2$
$f = 0, V_{CC} = 3.3$ | $^{2}V \text{ or } \overline{V_{IN}} \leq 0.2V,$ | | 55 | 100 | | 55 | 100 | μА | ### Capacitance^[9] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|----------------------------------|------|------| | C _{IN} | Input Capacitance | T _A = 25°C, f = 1 MHz | 8 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = V_{CC(typ)}$ | 8 | pF | ### Thermal Resistance^[9] | Parameter | Description | Test Conditions | FBGA | Unit | |---------------|--|---|------|------| | θ_{JA} | Thermal Resistance (Junction to Ambient) | Test conditions follow standard test methods and procedures for measuring thermal | 55 | °C/W | | θ_{JC} | Thermal Resistance (Junction to Case) | impedance, per EIA / JESD51. | 17 | °C/W | - 6. $V_{\rm IH(MAX)} = V_{\rm CC} + 0.5V$ for pulse durations less than 20 ns. 7. $V_{\rm IL(MIN)} = -0.5V$ for pulse durations less than 20 ns. 8. Overshoot and undershoot specifications are characterized and are not 100% tested. - 9. Tested initially and after design or process changes that may affect these parameters. ### **AC Test Loads and Waveforms** | Parameters | 3.0V V _{CC} | Unit | |-----------------|----------------------|------| | R1 | 22000 | Ω | | R2 | 22000 | Ω | | R _{TH} | 11000 | Ω | | V_{TH} | 1.50 | V | ## Switching Characteristics (Over the Operating Range) [10, 11, 12, 13, 14] | | | CYK512K1 | 6SCCA-55 | CYK512K1 | I6SCCA-70 | | |---------------------------------|--|--------------------|----------|----------|-----------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | Read Cycle | | | | | | | | t _{RC} | Read Cycle Time | 55 ^[14] | | 70 | | ns | | t _{AA} | Address to Data Valid | | 55 | | 70 | ns | | t _{OHA} | Data Hold from Address Change | 5 | | 5 | | ns | | t _{ACE} | CE ₁ LOW and CE ₂ HIGH to Data Valid | | 55 | | 70 | ns | | t _{DOE} | OE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZOE} | OE LOW to Low Z ^[11, 12] | 5 | | 5 | | ns | | t _{HZOE} | OE HIGH to High Z ^[11, 12] | | 25 | | 25 | ns | | t _{LZCE} | CE ₁ LOW and CE ₂ HIGH to Low Z ^[11, 12] | 5 | | 5 | | ns | | t _{HZCE} | CE ₁ HIGH and CE ₂ LOW to High Z ^[11, 12] | | 25 | | 25 | ns | | t _{DBE} | BLE/BHE LOW to Data Valid | | 55 | | 70 | ns | | t _{LZBE} | BLE/BHE LOW to Low Z ^[11, 12] | 5 | | 5 | | ns | | t _{HZBE} | BLE/BHE HIGH to High-Z ^[11, 12] | | 10 | | 25 | ns | | t _{SK} ^[14] | Address Skew | | 0 | | 10 | ns | #### Notes: 11. t_{HZOE}, t_{HZOE}, t_{HZBE} and t_{HZWE} transitions are measured when the outputs enter a high-impedance state. 12. High-Z and Low-Z parameters are characterized and are not 100% tested. 13. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, CE₂ = V_{IH}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates write. 14. To achieve 55-ns performance, the read access should be CE controlled. In this case t_{ACE} is the critical parameter and t_{SK} is satisfied when the addresses are stable prior to chip enable going active. For the 70-ns cycle, the addresses must be stable within 10 ns after the start of the read cycle. ^{10.} Test conditions assume signal transition time of 1V/ns or higher, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0V to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance # Switching Characteristics (Over the Operating Range) (continued)^[10, 11, 12, 13, 14] | | | CYK512K | 16SCCA-55 | CYK512K | 16SCCA-70 | | |-----------------------------|---|---------|-----------|---------|-----------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | Write Cycle ^[13] | | | • | • | 1 | | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | t _{SCE} | CE ₁ LOW and CE ₂ HIGH to Write End | 45 | | 55 | | ns | | t _{AW} | Address Set-up to Write End | 45 | | 55 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | t _{SA} | Address Set-up to Write Start | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 40 | | 55 | | ns | | t _{BW} | BLE/BHE LOW to Write End | 50 | | 55 | | ns | | t _{SD} | Data Set-up to Write End | 42 | | 42 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | t _{HZWE} | WE LOW to High Z ^[11, 12] | | 25 | | 25 | ns | | t _{LZWE} | WE HIGH to Low Z ^[11, 12] | 5 | | 5 | | ns | ### **Switching Waveforms** Read Cycle 1 (Address Transition Controlled)^[14, 15, 16] ### Read Cycle 2 (OE Controlled)[14, 15] ^{15.} WE is HIGH for Read Cycle. 16. Device is continuously selected. OE, CE = V_{IL}. ### Switching Waveforms (continued) Write Cycle No. 1(WE Controlled)[12, 13, 17, 18, 19] Write Cycle 2 (CE₁ or CE₂ Controlled)^[12, 13, 17, 18, 19] 17. Data I/O is high impedance if $\overline{OE} \ge V_{IH}$. 18. If Chip Enable goes INACTIVE simultaneously with $\overline{WE} = HIGH$, the output remains in a high-impedance state. 19. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied. ## Switching Waveforms (continued) Write Cycle 3 (WE Controlled, OE LOW)[18, 19] Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[18, 19] ### Truth Table^[20] | CE ₁ | CE ₂ | WE | OE | BHE | BLE | Inputs/Outputs | Mode | Power | |-----------------|-----------------|----|----|-----|-----|--|-----------------------------------|----------------------------| | Н | Х | Х | Χ | Х | Х | High Z | Deselect/Power-down | Standby (I _{SB}) | | Х | L | Х | Χ | Х | Х | High Z | Deselect/Power-down | Standby (I _{SB}) | | Χ | Х | Х | Χ | Н | Н | High Z | Deselect/Power-down | Standby (I _{SB}) | | L | Н | Н | L | L | L | Data Out (I/O ₀ -I/O ₁₅) | Read (Upper Byte and Lower Byte) | Active (I _{CC}) | | L | Н | Н | L | Н | L | Data Out (I/O ₀ –I/O ₇);
I/O ₈ –I/O ₁₅ in High Z | Read (Lower Byte only) | Active (I _{CC}) | | L | Н | Н | L | L | Н | Data Out (I/O ₈ -I/O ₁₅);
I/O ₀ -I/O ₇ in High Z | Read (Upper Byte only) | Active (I _{CC}) | | L | Н | Н | Н | L | L | High Z | Output Disabled | Active (I _{CC}) | | ┙ | Н | Н | Ι | Н | L | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | Н | L | Н | High Z | Output Disabled | Active (I _{CC}) | | L | Н | L | Х | L | L | Data In (I/O ₀ -I/O ₁₅) | Write (Upper Byte and Lower Byte) | Active (I _{CC}) | | L | Н | L | Х | Н | L | Data In (I/O ₀ -I/O ₇);
I/O ₈ -I/O ₁₅ in High Z | Write (Lower Byte Only) | Active (I _{CC}) | | L | Н | L | Х | L | Н | Data In (I/O ₈ –I/O ₁₅);
I/O ₀ –I/O ₇ in High Z | Write (Upper Byte Only) | Active (I _{CC}) | ## **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|----------------------|-----------------|---|--------------------| | 55 | CYK512K16SCCAU-55BAI | BA48K | 48-ball Fine Pitch BGA (6.0 x 8.0 x 1.2 mm) | Industrial | | 70 | CYK512K16SCCAU-70BAI | BA48K | 48-ball Fine Pitch BGA (6.0 x 8.0 x 1.2 mm) | Industrial | | 55 | CYK512K16SCAU-55BAXI | BA48K | 48-ball Fine Pitch BGA (6.0 x 8.0 x 1.2 mm) (Pb-Free) | Industrial | | 70 | CYK512K16SCAU-70BAXI | BA48K | 48-ball Fine Pitch BGA (6.0 x 8.0 x 1.2 mm) (Pb-Free) | Industrial | Note: 20. H = Logic HIGH, L = Logic LOW, X = Don't Care ### **Package Diagrams** ### 48-Ball (6 mm x 8mm x 1.2 mm) FBGA BA48K **BOTTOM VIEW** TOP VIEW A1 CORNER Ø0.05 M € Ø0.25 M € A B Ø0.30±0.05(48X) A1 CORNER ⊕ ○ ○ ○ ○ Ó ⊕ ○ ○ ○ ○ ○ В C 000,000 C 0.75 000000 00000 Е 000000 2.625 G 000000 G $\oplus \circ \circ \circ \oplus \oplus$ A A 1.875 0.75 В 6.00±0.10 3.75 В 6.00±0.10 0.15(4X) **REFERENCE JEDEC MO-207** 0 0 0 0 0 0 SEATING PLANE 0.36 C 1.20 MAX 51-85193-*A MoBL is a registered trademark, and MoBL3 and More Battery Life are trademarks, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders. ## **Document History Page** | REV. | ECN NO. | Issue Date | Orig. of
Change | Description of Change | |------|---------|------------|--------------------|---| | ** | 130538 | 01/27/04 | AWK | New Data Sheet | | *A | 216680 | See ECN | REF | Added 55 ns Speed bin Updated from Advance Information to Final Data Sheet. | | *B | 220121 | See ECN | REF | Changed the t_{OHA} for 70 ns speed grade from 10 ns to 5 ns Changed the l_{SB2} from 80 μA to 100 μA | | *C | 230851 | See ECN | AJU | Changed Ordering code from CYK512K16SCCA to CYK512K16SCCAU i 'Ordering Information' table Modified MAX limit on DC Input voltage from 3.3V to 3.7V in 'Maximum Ratings' section | | *D | 283389 | See ECN | REF | Changed the t_{SD} write parameter from 25ns to 42ns for both the 55ns and 70ns speed grade. | | *E | 313999 | See ECN | RKF | Added Pb-Free parts to the Ordering information |