International TOR Rectifier

May 14, 2012

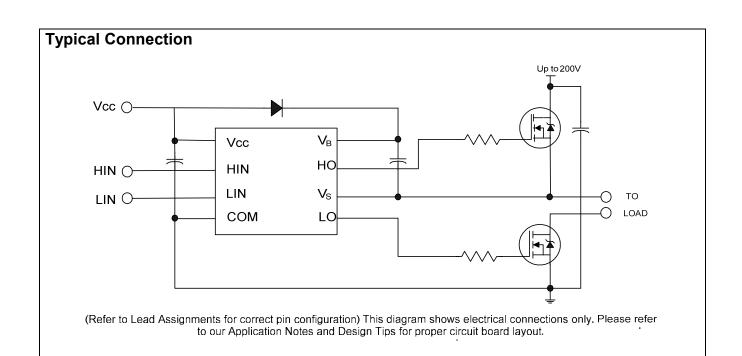
IRS2001MPBF HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +200V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10V to 20V
- Undervoltage lockout
- 3.3V, 5V, and 15V logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Outputs in phase with inputs
- Leadfree, RoHS compliant

Description

The IRS2001 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver crossconduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 200V.


Product Summary

Topology	General Driver
V _{OFFSET}	≤ 200V
V _{OUT}	10V – 20V
I _{o+} & I _{o-} (typical)	290mA & 600mA
t _{on} & t _{off} (typical)	160ns & 150ns
Delay Matching (Max.)	50ns

Package Options

MLPQ4x4 - 16 Leads (Without 2 leads)

International

TOR Rectifier

IRS2001MPBF

Qualification Information[†]

Quantication into	Jiiiatioii				
		Industrial ^{TT}			
		(per JEDEC JESD 47)			
Qualification Level			has passed JEDEC's Industrial		
		qualification. IR's Consumer qualification level is granted			
		by extension of the high			
Moisture Sensitivity Level		MI DO 4: 4 4 4 1	MSL2 ^{†††}		
		MLPQ4x4 14L	(per IPC/JEDEC J-STD-020)		
Machine Model		Class A (+/-200V)			
	iviaciline iviodei	(per JEDEC standard JESD22-A115A)			
ESD	Human Bady Madal	Class 1C (+/-2000V)			
230	Human Body Model	(per JEDEC standard JESD22-A114F)			
	Charged Davies Madel	Class III (+/-1000V)			
	Charged Device Model	(per JEDEC standard JESD22-C101D)			
IC Latch-Up Test		Class II, Level B			
		(per AEC-Q100-004)			
RoHS Compliant		Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating absolute voltage	-0.3	225	
Vs	High side floating supply offset voltage	V _B - 25	V _B + 0.3	
V_{HO}	High side floating output voltage	V _S - 0.3	V _B + 0.3	V
V_{CC}	Low side and logic fixed supply voltage	-0.3	25	V
V_{LO}	Low side output voltage	-0.3	$V_{CC} + 0.3$	
V_{IN}	Logic input voltage (HIN & LIN)	-0.3	$V_{CC} + 0.3$	
dV _S /dt	Allowable offset supply voltage transient	_	50	V/ns
P_{D}	Package power dissipation @ TA ≤ 25°C	_	2.08	W
Rth_JA	Thermal resistance, junction to ambient	_	36	°C/W
T _J	Junction temperature	_	150	
Ts	Storage temperature	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)	_	300	

Recommended Operating Conditions

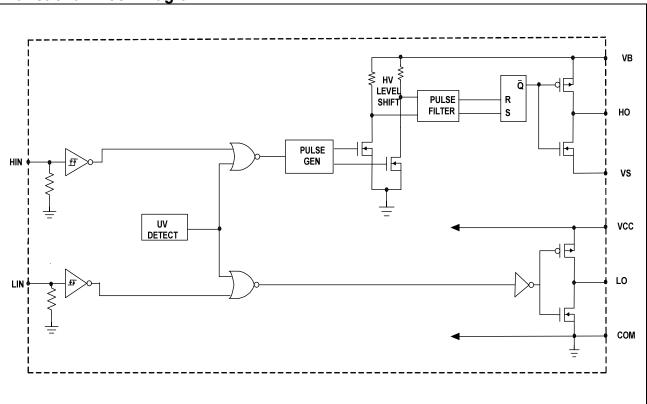
The input/output logic timing diagram is shown in Fig 1. For proper operation the device should be used within the recommended conditions. The V_s offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	†	200	
V_{HO}	High side floating output voltage	Vs	V_{B}	V
V_{CC}	Low side and logic fixed supply voltage	10	20	V
V_{LO}	Low side output voltage	0	V_{CC}	
V_{IN}	Logic input voltage	0	V_{CC}	
T _A	Ambient temperature	-40	125	°C

[†] Logic operational for V_S of -5V to +200V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

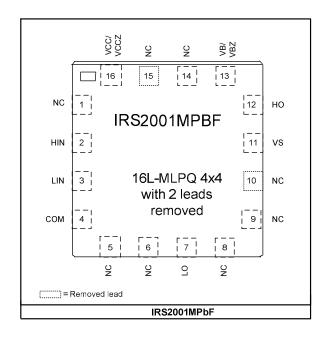
 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000pF, T_A = 25°C unless otherwise specified.


Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{on}	Turn-on propagation delay		160	220		$V_S = 0V$
t _{off}	Turn-off propagation delay		150	220		V _S = 200V
tr	Turn-on rise time	_	70	170	ns	
t _f	Turn-off fall time	_	35	90		
MT	Delay Matching, HS & LS turn-on/off	_	_	50		

Static Electrical Characteristics

 $V_{BIAS}(V_{CC},\ V_{BS}\)$ = 15V and T_A = 25°C unless otherwise specified. The $V_{IN},\ V_{TH},\$ and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V_{IH}	Logic "1" input voltage	2.5	_	_		V _{CC} = 10V to 20V
V_{IL}	Logic "0" input voltage	_	_	8.0	V	V _{CC} = 10V to 20V
V_{OH}	High level output voltage, V_{BIAS} - V_{O}	_	0.05	0.2	V	I _O = 2mA
V_{OL}	Low level output voltage, V _O	_	0.02	0.1		10 - ZIIIA
I _{LK}	Offset supply leakage current	_	_	50		$V_{B} = V_{S} = 200V$
I _{QBS}	Quiescent V _{BS} supply current	_	30	55		V _{IN} = 0V or 5V
I _{QCC}	Quiescent V _{CC} supply current	_	150	270	μA	V _{IN} = 0 V 01 5 V
I _{IN+}	Logic "1" input bias current	_	3	10		V _{IN} = 5V
I _{IN-}	Logic "0" input bias current	_		5		$V_{IN} = 0V$
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	8.0	8.9	9.8	V	
V _{CCUV-}	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
I _{O+}	Output high short circuit pulsed current	200	290	_	m A	$V_O = 0V$, $V_{IN} = \text{Logic "1"}$ $PW \le 10 \mu\text{s}$
I _{O-}	Output low short circuit pulsed current	420	600	_	mA	$V_{O} = 15V,$ $V_{IN} = \text{Logic "0"}$ $PW \le 10 \mu\text{s}$


Functional Block Diagram

Lead Definitions

PIN	Symbol	Description		
1	NC	No connection		
2	HIN	Logic input for high side gate driver output (HO), in phase		
3	LIN	Logic input for low side driver output (LO), in phase		
4	COM	Low side return		
5	NC	No Connection		
6	NC	No Connection		
7	LO	Low side gate drive output		
8	NC	No Connection		
9	NC	No Connection		
10	NC	No Connection (pin removed)		
11	V_S	High side floating supply return		
12	НО	High side gate drive output		
13	V_B/V_{BZ}	High side floating supply		
14	NC	No Connection		
15	NC	No Connection (pin removed)		
16	V _{CC} /V _{CCZ}	Low side and logic fixed supply		

Lead Assignments

Application Information and Additional Details

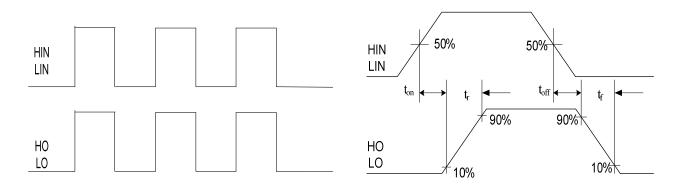


Figure 1: Input/Output Timing Diagram

Figure 2: Switching Time Waveform Definitions

Figure 3: Delay Matching Waveform Definitions

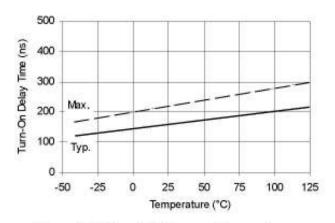


Figure 6A. Turn-On Time vs. Temperature

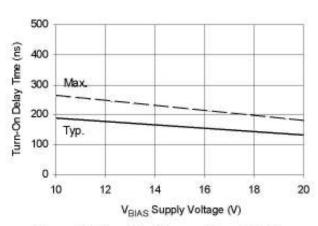


Figure 6B. Turn-On Time vs. Supply Voltage

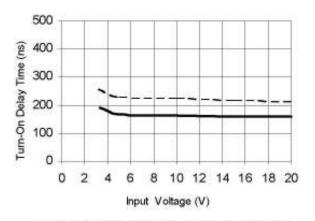


Figure 6C. Turn-On Time vs. Input Voltage

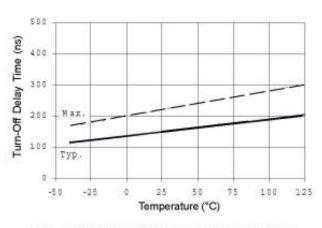


Figure 7A. Turn-Off Time vs. Temperature

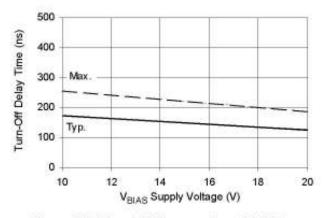


Figure 7B. Turn-Off Time vs. Supply Voltage

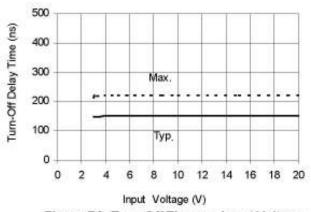


Figure 7C. Turn-Off Time vs. Input Voltage

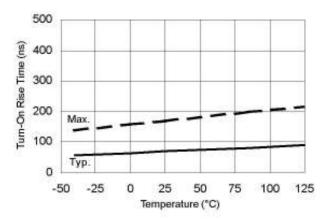


Figure 9A. Turn-On Rise Time vs. Temperature

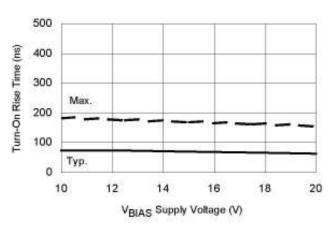


Figure 9B. Turn-On Rise Time vs. Voltage

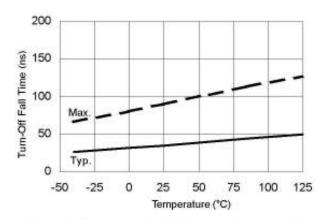


Figure 10A. Turn-Off Fall Time vs. Temperature

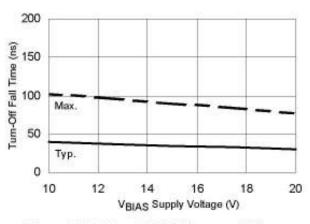


Figure 10B. Turn-Off Fall Time vs. Voltage

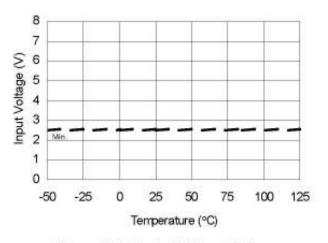


Figure 12A. Logic "1" Input Voltage vs. Temperature

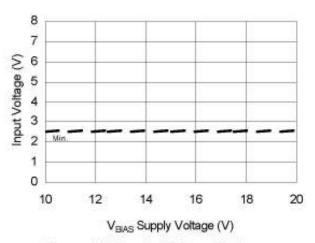


Figure 12B. Logic "1" Input Voltage vs. Voltage

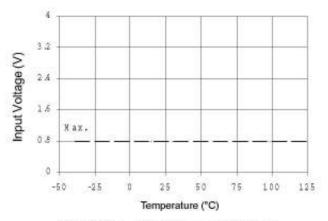


Figure 13A. Logic "0" Input Voltage vs. Temperature

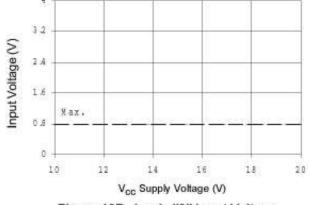


Figure 13B. Logic "0" Input Voltage vs. Supply Voltage

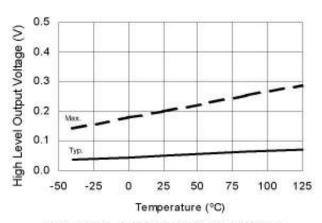


Figure 14A. High Level Output Voltage vs. Temperature

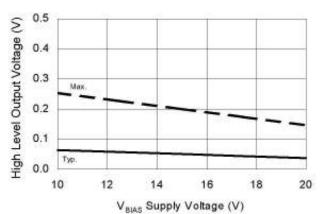


Figure 14B. High Level Output vs. Supply Voltage

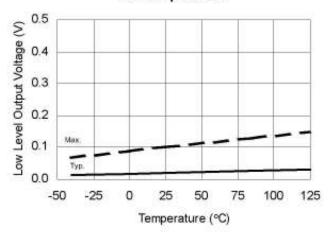


Figure 15A. Low Level Output Voltage vs. Temperature

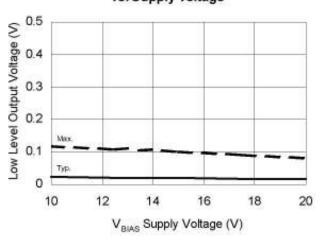
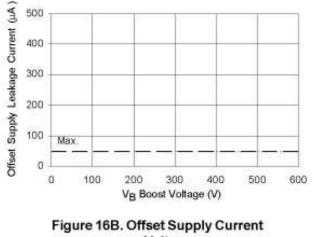



Figure 15B. Low level Output vs.Supply Voltage

500

Figure 16A. Offset Supply Current vs. Temperature

vs. Voltage

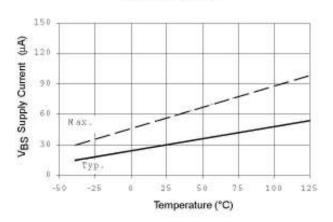


Figure 17A. V_{BS} Supply Current vs. Temperature

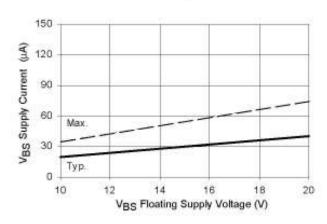


Figure 17B. V_{BS} Supply Current vs. Voltage

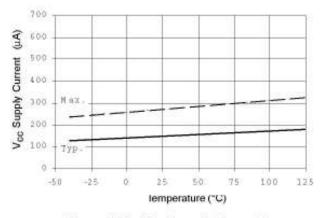


Figure 18A. V_{CC} Supply Current vs. Temperature

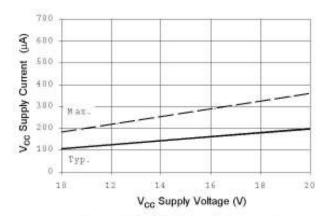


Figure 18B. V_{CC} Supply Current vs. Voltage

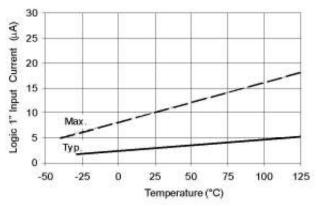


Figure 19A. Logic"1" Input Current vs. Temperature

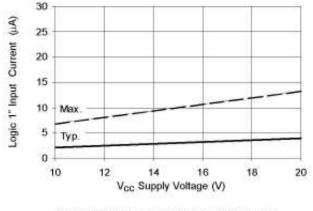


Figure 19B. Logic"1" Input Current vs. Voltage

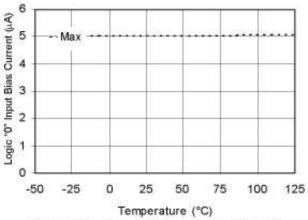


Figure 20A. Logic "0" Input Bias Current vs. Temperature

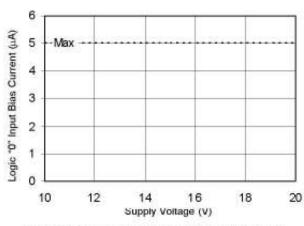


Figure 20B. Logic "0" Input Bias Current vs. Voltage

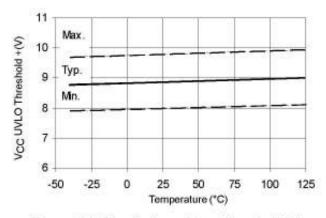


Figure 21A. V_{CC} Undervoltage Threshold(+) vs. Temperature

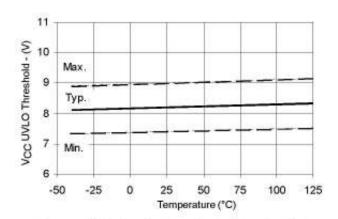
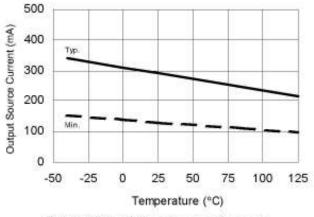



Figure 21B. V_{CC} Undervoltage Threshold(-) vs. Temperature

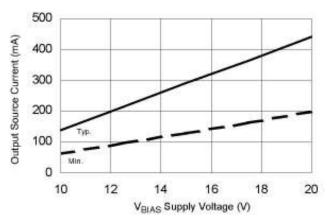
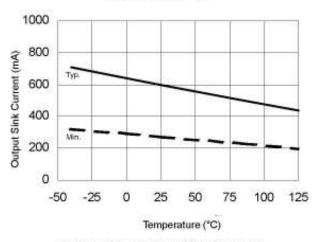



Figure 22A. Output Source Current vs. Temperature

Figure 22B. Output Source Current vs. Supply Voltage

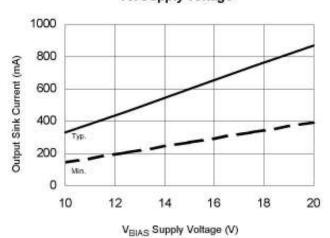
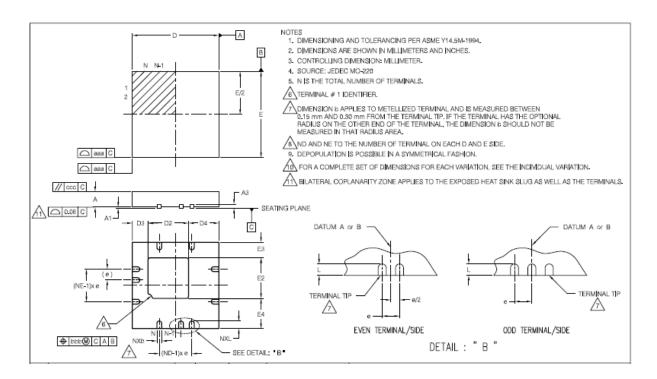
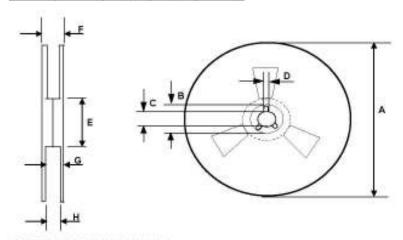



Figure 23A. Output Sink Current vs. Temperature

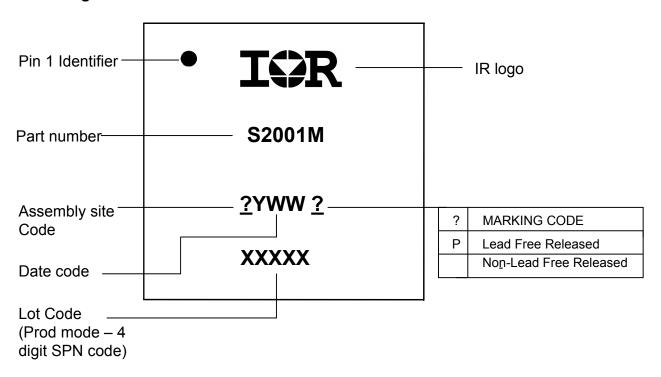
Figure 23B. Output Sink Current vs. Supply Voltage

Package Details: MLPQ 4x4 -14L


SYMBOL	VGGD-10					
B	M	ILLIMETE	RS		INCHES	
Ľ	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	.032	-035	-039
A1	0.00	0.02	0.05	.000	-0008	-0019
A3		0.20 REF			.008 REF	
b	0.18	0.25	0.30	.007	.010	.012
D2	1.78	1.88	1.98	.070	.074	.078
D3		0.73 REF	-		.029 REF	
D4		1.40 REF	=		.055 REF	
D		4.00 BS0		.157 BSC		
Е		4.00 BS0		.157 BSC		
E4		1.40 REF	-	.055 REF		
E3		0.73 REF	-		.029 REF	
E2	1.78	1.88	1.98	.070	.074	.078
L	0.30	0.40	0.50	.012	.016	.020
е		0.50 PITC	H	.(20 PITC	+
N		16			16	
ND	4				4	
NE	4				4	
aaa	0.15				.0059	
bbb	0.10				.0039	
CCC		0.10			.0039	
ddd		0.05			.0019	

Tape and Reel Details: MLPQ 4x4 - 14L

CARRIER TAPE DIMENSION FOR MLPQ4X4V


Sec.	Me	tric	Imp	erial
Code	Min Max		Min	Max
A	7.90	8.10	0.311	0.358
В	3.90	4.10	0.154	0.161
C	11.70	12.30	0.461	0.484
D	5.45	5.55	0.215	0.219
E	4.25	4.45	0.168	0.176
F	4.25	4.45	0.168	0.176
G	1.50	n/a	0.069	n/a
H	1.50	1.60	0.069	0.063

REEL DIMENSIONS FOR MLPQ4X4V

	Metric		Imp	erial
Code	Min	Max	Min	Max
A.	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
C	12.80	13.20	0.503	0.519
D E	1.96	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
H	12.40	14.40	0.488	0.586

Part Marking Information

Ordering Information

Dono Bort Normbon	Standard Pack		Commission Boot Number	
Base Part Number	Package Type	Form	Quantity	Complete Part Number
ID00004	MI DO 4×4 141	Tube/Bulk	92	IRS2001MPBF
IRS2001 MLPQ 4x4-14L		Tape and Reel	3,000	IRS2001MTRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 "Not recommended for new designs. For new designs we recommend IRS2005M"

International
TOR Rectifier

IRS2001MPBF

Revision History

Date	Comment
9/15/09	Initial draft converted from SO8 data sheet
06/18/2010	Included Qual Info Page
05/14/2012	lo+/- minspec modification